MATH 241 Multivariable Calculus
 Exam \#2 SOLUTIONS March 25, $2015 \quad$ Prof. G. Roberts

1. Multiple Choice: Choose the best answer available (no work required). (5 pts. each)
(a) Suppose that the curvature $\kappa(t)$ of the path of a moving particle is always zero. Which of the following is NOT necessarily true?
(i) The particle is traveling along a straight line.
(ii) The normal component of the acceleration a_{N} is zero.
(iii) The unit tangent vector $\mathbf{T}(t)$ is constant.
(iv) The speed of the particle is constant.

Answer: (iv). Since the curvature is always zero, the path traced out by the particle must be a straight line. The formula $a_{N}=\kappa\left|\mathbf{r}^{\prime}(t)\right|^{2}$ shows that $a_{N}=0$ and the formula $\kappa=|d \mathbf{T} / d s|$ implies that the unit tangent vector is constant. (Note that this also follows because the path of the particle is on a straight line.) The speed $\left|\mathbf{r}^{\prime}(t)\right|$, however, does not have to be constant (the particle could be accelerating or decelerating along its line of motion).
(b) Evaluate the following limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{3 x^{4}+y^{4}}$
(i) 0
(ii) $1 / 4$
(iii) $1 / 3$
(iv) The limit does not exist.

Answer: (iv). The limit does not exist. If we choose a path along the x-axis (setting $y=0$), we find $\lim _{x \rightarrow 0} \frac{0}{3 x^{4}+0}=0$, but taking a path along the line $y=x$, we obtain $\lim _{x \rightarrow 0} \frac{x^{4}}{3 x^{4}+x^{4}}=1 / 4$. Since these two values are not equal, the limit does not exist.
(c) If it exists, the value of $\lim _{h \rightarrow 0} \frac{f(-1,3+h)-f(-1,3)}{h}$ equals
(i) $f_{x}(-1,3)$
(ii) $f_{y}(-1,3)$
(iii) $f_{x y}(-1,3)$
(iv) $D_{-\mathbf{i}} f(-1,3)$
(v) $D_{3 \mathbf{j}} f(-1,3)$

Answer: (ii). This is the limit definition for the partial derivative of f with respect to y at the point $(-1,3)$.
(d) Consider the contour plot of the function $f(x, y)$ shown below. Which of the following best describes the signs of the partial derivatives at the point P ?

(i) $f_{x}>0, f_{y}>0, f_{y y}>0$
(ii) $f_{x}>0, f_{y}<0, f_{y y}<0$
(iii) $f_{x}>0, f_{y}<0, f_{y y}>0$
(iv) $f_{x}<0, f_{y}>0, f_{y y}>0$
(v) $f_{x}<0, f_{y}<0, f_{y y}<0$

Answer: (iii). Starting at the point P and moving in the positive x-direction, we see that the function values are increasing, so $f_{x}>0$. However, moving in the positive y-direction, the contour values decrease, so $f_{y}<0$. Since the contours are spreading apart in the positive y-direction, the rate of decrease in the y-direction is increasing (e.g., the slopes might be something like -4 , then -2 , then -1). Thus, the values of f_{y} are increasing in the positive y-direction and consequently, $f_{y y}>0$.
2. Consider the parametrized curve $\mathbf{r}(t)=3 t^{2} \mathbf{i}+\left(2-t^{2}\right) \mathbf{j}+\left(-1+\frac{3}{2} t^{2}\right) \mathbf{k}$, with $t \geq 0$. (19 pts.)
(a) Find the speed at which the curve is being traced out.

Answer: We have $\mathbf{r}^{\prime}(t)=<6 t,-2 t, 3 t>$, so that

$$
\begin{aligned}
\left|\mathbf{r}^{\prime}(t)\right| & =\sqrt{(6 t)^{2}+(-2 t)^{2}+(3 t)^{2}} \\
& =\sqrt{36 t^{2}+4 t^{2}+9 t^{2}} \\
& =\sqrt{49 t^{2}} \\
& =7 t \quad \text { since } t \geq 0
\end{aligned}
$$

(b) Reparametrize the curve with respect to arc length s measured from the point where $t=0$. Answer: Using the result from part (a), we must solve the differential equation

$$
\frac{d s}{d t}=7 t, \quad s(0)=0
$$

Separating and integrating leads to $d s=7 t d t$, and then $s(t)=\frac{7}{2} t^{2}+c$. Since $s=0$ when $t=0$, we quickly find that $c=0$. Therefore $s=\frac{7}{2} t^{2}$, or, after solving for $t, t=\sqrt{2 s / 7}$.

Substituting the value for t back into the original parametrization yields

$$
\begin{aligned}
\mathbf{r}(t(s)) & =3\left(\frac{2 s}{7}\right) \mathbf{i}+\left(2-\frac{2 s}{7}\right) \mathbf{j}+\left(-1+\frac{3}{2} \cdot \frac{2 s}{7}\right) \mathbf{k} \\
& =\frac{6 s}{7} \mathbf{i}+\left(2-\frac{2 s}{7}\right) \mathbf{j}+\left(-1+\frac{3 s}{7}\right) \mathbf{k}
\end{aligned}
$$

(c) What is the curve being traced out? Be as specific as possible.

Answer: The curve being traced out is a line since it can be written in the standard form $\mathbf{r}(s)=\mathbf{P}+\mathbf{v} s$. The line starts at the point $P=(0,2,-1)$ and heads in the direction of the vector $\mathbf{v}=<6 / 7,-2 / 7,3 / 7>$.
3. Consider the function $z=g(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right)$. (15 pts.)
(a) State the domain and range of $g(x, y)$.

Answer: The domain is all points in the $x y$-plane except for the origin $(0,0)$. This can be written as $\mathbb{R}^{2}-\{(0,0)\}$. We must exclude the origin because $\ln (0)$ is undefined. The range of g is all real numbers, or $(-\infty, \infty)$, because that is the range of the natural log function. (All positive real values will be plugged into the \log function because $\sqrt{x^{2}+y^{2}}$ can output any positive real number.)
(b) Sketch the level curves (contours) of $g(x, y)$ using the values $c=-1,0,1,2$.

Answer: The level curves are found by solving $g(x, y)=c$. This gives $\ln \left(\sqrt{x^{2}+y^{2}}\right)=c$ or $\sqrt{x^{2}+y^{2}}=e^{c}$. Squaring both sides of this last equation, we obtain

$$
x^{2}+y^{2}=\left(e^{c}\right)^{2}
$$

which means that the level curves are circles centered at $(0,0)$ with radius $r=e^{c}$. For the values $c=-1,0,1,2$, the radii of the four contours are approximately $0.37,1,2.7,7.4$, respectively. The contour plot is shown below.

4. Find the equation of the tangent plane to the graph of the function (a surface)

$$
z=f(x, y)=y \sin (x-y)-5
$$

at the point $(3,3,-5)$. (10 pts .)
Answer: $z=3 x-3 y-5$. We have $f_{x}=y \cos (x-y) \cdot 1$ so that $f_{x}(3,3)=3 \cdot \cos (0)=3$, and $f_{y}(x, y)=\sin (x-y)+y \cdot \cos (x-y) \cdot(-1)$ (product rule and chain rule). Thus, $f_{y}(3,3)=$ $0+3 \cdot \cos (0) \cdot(-1)=-3$.
Using the formula for the equation of a tangent plane to the graph of a function,

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

we have

$$
z+5=3(x-3)+-3(y-3)
$$

which simplifies to $z=3 x-3 y-5$.
5. Suppose that $w=f(x, y, z)$ is a differentiable function of three variables, and that $x=x(t)$, $y=y(t)$, and $z=z(t)$ are each differentiable functions of one variable. (16 pts .)
(a) Use a tree diagram to write out the Chain Rule for $d w / d t$.

Answer: The tree diagram for $d w / d t$ is shown below.

From the diagram, we have that

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial f}{\partial z} \cdot \frac{d z}{d t} .
$$

(b) Suppose that $w=f(x, y, z)=x^{2} y e^{x-z}$ and that

$$
\begin{array}{lll}
x(2)=3 & y(2)=-1 & z(2)=3 \\
x^{\prime}(2)=1 / 3 & y^{\prime}(2)=0 & z^{\prime}(2)=4
\end{array}
$$

Find $d w / d t$ when $t=2$.

Answer: 31. First we compute the partials of f. We find that

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x y e^{x-z}+x^{2} y e^{x-z} \cdot 1=x y e^{x-z}(2+x) \\
& \frac{\partial f}{\partial y}=x^{2} e^{x-z} \\
& \frac{\partial f}{\partial z}=x^{2} y e^{x-z} \cdot(-1)=-x^{2} y e^{x-z}
\end{aligned}
$$

Next, since $t=2$, we plug in the values of x, y and z at $t=2$ into each partial. These values are given as $x(2)=3, y(2)=-1$ and $z(2)=3$. In other words, $(x, y, z)=(3,-1,3)$. We compute that $f_{x}(3,-1,3)=-15, f_{y}(3,-1,3)=9$, and $f_{z}(3,-1,3)=9$.
Using our chain rule from part (a), we find that

$$
\begin{aligned}
\frac{d w}{d t} & =-15 \cdot \frac{1}{3}+9 \cdot 0+9 \cdot 4 \\
& =-5+36=31
\end{aligned}
$$

6. Let $f(x, y)=\sqrt{x^{2}+2 y^{2}} . \quad(20$ pts.)
(a) Find and simplify the gradient of $f(x, y)$.

Answer: We compute that

$$
\begin{aligned}
& f_{x}=\frac{1}{2}\left(x^{2}+2 y^{2}\right)^{-1 / 2} \cdot 2 x=\frac{x}{\sqrt{x^{2}+2 y^{2}}} \\
& f_{y}=\frac{1}{2}\left(x^{2}+2 y^{2}\right)^{-1 / 2} \cdot 4 y=\frac{2 y}{\sqrt{x^{2}+2 y^{2}}}
\end{aligned}
$$

Therefore,

$$
\nabla f=<\frac{x}{\sqrt{x^{2}+2 y^{2}}}, \frac{2 y}{\sqrt{x^{2}+2 y^{2}}}>
$$

(b) Find the directional derivative of $f(x, y)$ at the point $(-1,2)$ in the direction of the vector $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$.
Answer: $19 / 15$. We use the formula $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}$ for the directional derivative. First, we must convert \mathbf{v} into a unit vector by dividing by its length, $|\mathbf{v}|=5$. This gives

$$
\left.\mathbf{u}=\frac{1}{5}<-3,4\right\rangle=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle
$$

Then, using the formula from part (a), we compute that

$$
\nabla f(-1,2)=<-\frac{1}{3}, \frac{4}{3}>
$$

Taking the dot product of these two vectors, we find $D_{\mathbf{u}} f(-1,2)=3 / 15+16 / 15=19 / 15$.
(c) Find the direction (as a unit vector) of greatest decrease for f at the point $(-1,2)$.

Answer: Recall that ∇f points in the direction of greatest increase. Therefore, $-\nabla f$ points in the direction of greatest decrease. From part (b), we see that

$$
-\nabla f(-1,2)=<\frac{1}{3},-\frac{4}{3}>
$$

To make this into a unit vector, we divide by its length,

$$
|-\nabla f(-1,2)|=\sqrt{\frac{1}{9}+\frac{16}{9}}=\frac{\sqrt{17}}{3}
$$

Our final answer is therefore

$$
\frac{3}{\sqrt{17}}<\frac{1}{3},-\frac{4}{3}>\quad \text { or } \quad<\frac{1}{\sqrt{17}},-\frac{4}{\sqrt{17}}>.
$$

