## MATH 136-02, 136-03 Calculus 2, Fall 2018

## Section 9.1: Solving Differential Equations

This sections kicks off a short chapter on differential equations, a very important subject in its own right. Differential equations are used to model and understand quantities that change over time, and can be found in a wide variety of fields ranging from physics to medicine to economics to climate science.

## Examples of Differential Equations

A differential equation is an equation involving an unknown function and its derivative(s). Below are four examples of some well-known differential equations:

$$
\begin{align*}
\frac{d y}{d t} & =r y  \tag{1}\\
\frac{d P}{d t} & =r P\left(1-\frac{P}{K}\right)  \tag{2}\\
m_{i} \frac{d^{2} \mathbf{q}_{i}}{d t^{2}} & =\sum_{j \neq i}^{n} \frac{m_{i} m_{j}\left(\mathbf{q}_{j}-\mathbf{q}_{i}\right)}{\left\|\mathbf{q}_{i}-\mathbf{q}_{j}\right\|^{3}}  \tag{3}\\
R \frac{\partial T}{\partial t} & =Q s(y)(1-\alpha)-(A+B T)-C(T-\bar{T}) \tag{4}
\end{align*}
$$

Equation (1) models the amount of money $y(t)$ in an account where interest is compounded continuously at an annual rate of $r \%$. It also describes a population $y(t)$ that grows exponentially with growth rate $r$. Equation (2) is known as the Logistic Population Model, where the population $P(t)$ levels off at the value $K$ over time ( $K$ is known as the carrying capacity). In Equation (3) we have the Newtonian $n$-body problem. Here $\mathbf{q}_{i}$ is the position of the $i$ th celestial body (e.g., the Sun, a planet, a comet, or a spaceship) and $m_{i}$ represents the mass of the $i$ th body. The force between each pair of bodies is given by Newton's inverse square law. This is actually a system of $n$ differential equations, each in three dimensions, and is essentially impossible to solve without the help of a computer. The final equation models the average annual temperature $T(y, t)$ of a planet at latitude $y=\sin \theta$. In all of the above models, $t$ represents time.

We will be focusing on ordinary differential equations (ODE's), which means the derivatives involved are always with respect to one quantity (usually time $t$ ). Given a differential equation, the basic aim is to find a function that satisfies the equation. Unlike an algebraic equation, here the goal is to find a function, rather than a number, that makes the equation true. For example, consider the differential equation

$$
\frac{d y}{d t}=-3 y
$$

The function $y(t)=e^{-3 t}$ satisfies the ODE, as can be checked by plugging it into both sides of the equation. We have

$$
\frac{d y}{d t}=-3 e^{-3 t} \text { on the left and } \quad-3 y=-3 e^{-3 t} \quad \text { on the right. }
$$

Since these are equivalent, $y(t)=e^{-3 t}$ is a solution to the ODE. Note that $y=6 e^{-3 t}$ is also a solution because it too satisfies the ODE. In fact, $y=c e^{-3 t}$ is a solution for any constant $c$ because

$$
\frac{d y}{d t}=c \cdot-3 e^{-3 t}=-3 c e^{-3 t}=-3 y .
$$

We say that the general solution to the differential equation is $y=c e^{-3 t}$. This is a very important aspect of the subject: a differential equation has an infinite number of solutions (one for each value of $c$ ).

Exercise 1: Check that $y=A \sin 2 t+B \cos 2 t$ satisfies the ODE $y^{\prime \prime}+4 y=0$ for any constants $A$ and $B$.

## Separation of Variables

We now explain a simple technique for finding the solution to a differential equation of the form

$$
\frac{d y}{d t}=f(y) \cdot g(t)
$$

The idea is to separate the variables onto different sides of the equation and then integrate each side with respect to the given variable. Then we solve for the dependent variable (in this case $y$ ) to obtain the general solution. Here is a worked out example.

Example 1: Find the general solution to the ODE $\frac{d y}{d t}=-3 t^{2} y$ using the Separation of Variables technique (i.e., separate and integrate). Then find the particular solution satisfying the initial condition $y(0)=5$.

Answer: We begin by moving the terms with $y$ to the left-hand side of the equation and those with $t$ to the right:

$$
\frac{d y}{d t}=-3 t^{2} y \quad \Longrightarrow \quad \frac{1}{y} d y=-3 t^{2} d t
$$

Next we integrate both sides, integrating on the left-hand side with respect to $y$ and integrating on the right-hand side with respect to $t$. This gives

$$
\int \frac{1}{y} d y=\int-3 t^{2} d t \quad \Longrightarrow \quad \ln |y|=-t^{3}+c
$$

Notice that we only have one integration constant $c$ on the right-hand side. If we had a constant on the left-hand side as well ( say $d$ ), we would have moved it over to the right-hand side and combined it with $c$ (replacing $c-d$ with just $c$ ). Now we solve for $y$ by raising both sides to the base $e$ :

$$
e^{\ln |y|}=e^{-t^{3}+c}=e^{-t^{3}} \cdot e^{c}=c e^{-t^{3}} \quad \Longrightarrow \quad|y|=c e^{-t^{3}},
$$

where we have replaced the constant $e^{c}$ with just $c$ (they are both arbitrary constants so we opt for the simplest choice $c$ ). Thus, $y= \pm c e^{-t^{3}}$, which can be condensed to just $y=c e^{-t^{3}}$, with $c \in \mathbb{R}$ an arbitrary constant. The general solution is $y=c e^{-t^{3}}$ (check that it satisfies the ODE).

To find the particular solution satisfying $y(0)=5$, we plug in $t=0$ and $y=5$ into the general solution we just found and solve for the constant $c$. This gives

$$
5=c e^{0} \quad \Longrightarrow \quad c=5
$$

Therefore, the particular solution we seek is $y=5 e^{-t^{3}}$.

## Exercises:

2. Show that $y=4 x^{4}-12 x^{2}+3$ is a solution to the differential equation $y^{\prime \prime}-2 x y^{\prime}+8 y=0$.
3. Use the Separation of Variables technique to find the general solution to $\frac{d y}{d t}=r y$, where $r$ is a constant. Where have we seen this formula before?
4. Use the Separation of Variables technique to find the general solution to $y^{\prime}=y^{2} \sin (4 x)$. Then find the particular solution satisfying $y(0)=1$.
5. Find the solution to $y^{\prime}=\left(1-t^{2}\right)\left(1+y^{2}\right)$ satisfying the initial condition $y(0)=-1$.
6. Find the solution to $\sqrt{1-x^{2}} y^{\prime}=x \sqrt{y}, y(0)=9$.
7. Find the solution to $y^{\prime}=(y-2) e^{\pi \sec ^{2}\left(y^{-3}\right)+t^{4} \cos (5 t)}, y(0)=2$. Hint: There's an easy way and a hard way ...
