MATH 136-02, 136-03 Calculus 2, Fall 2018 Compound Interest and Present Value: SOLUTIONS

Exercise 1: Suppose that $P_{0}=\$ 5,000$ is invested in an account paying at an annual rate of 7%. Find the amount in the account after 8 years if it is compounded (a) quarterly, (b) monthly, and (c) continuously.

Answer: (a) Use $r=0.07, M=4$, and $t=8$ in the formula for compound interest:
$P(8)=5,000(1+0.07 / 4)^{4.8}=\$ 8,711.07$ (rounding to the nearest cent)
(b) Use $r=0.07, M=12$, and $t=8$ in the formula for compound interest: $P(8)=5,000(1+0.07 / 12)^{12 \cdot 8}=\$ 8,739.13$
(c) Use $r=0.07$ and $t=8$ in the formula for continuously compounded interest: $P(8)=5,000 e^{0.07 \cdot 8}=\$ 8,753.36$

Exercise 2: A bank pays interest at an annual rate of 3.5%. What is the yearly multiplier (to 6 decimal places) if the interest is compounded (a) 5 times a year, (b) 30 times a year, or (c) continuously?

Answer: The yearly multiplier for compounding interest M times a year is $(1+r / M)^{M}$. Thus we find (a) $(1+0.035 / 5)^{5} \approx 1.035493$ and $(\mathrm{b})(1+0.035 / 30)^{30} \approx 1.035599$.
(c) When compounding continuously, the multiplier becomes e^{r}, so we obtain $e^{0.035} \approx 1.035620$.

Exercise 3: How much should you invest today in order to receive $\$ 10,000$ in 5 years if interest is compounded continuously at a rate of 2.5% ?
Answer: Using the formula for present value (PV), we obtain $10,000 e^{-0.025 \cdot 5} \approx \$ 8,824.97$
Exercise 4: Is it better to receive $\$ 500$ today or $\$ 600$ in 5 years if the interest rate is 3% ? What if the rate increases to 4% ? Assume that interest is compounded continuously.
Answer: (a) It is better to receive $\$ 600$ in 5 years if the rate is 3%. To see this, we calculate the present value of $\$ 600$ in 5 years, $600 e^{-0.03 * 5} \approx \$ 516.42$. Since this amount is greater than $\$ 500$, it is the better deal.
(b) Somewhat surprisingly, if the interest rate bumps up to 4%, then it is better to stick with the $\$ 500$ today. This follows because the present value of $\$ 600$ in 5 years with the new interest rate is $600 e^{-0.04 * 5} \approx \$ 491.24$. Since this value is less than $\$ 500$, it is not the better deal. Another way to see this is to compute the value of $\$ 500$ compounded continuously for 5 years at the new rate: $500 e^{0.04 * 5} \approx \$ 610.70$ which is greater than $\$ 600$.

Exercise 5: Congratulations, you just won $\$ 2$ million dollars in the lottery! However, you do not get all of your money now; you will receive four yearly payments of $\$ 500,000$ beginning immediately. Assuming an interest rate of 5%, what is the present value of your prize? How much do you "lose" by not receiving the full prize today?

Answer: This is a tricky one. We need to compute the present value of each yearly payment and then add them together to see how they compare with $\$ 2$ million. The first payment starts the clock (time $t=0$). We obtain

$$
\begin{aligned}
500,000+500,000 e^{-0.05 \cdot 1}+500,000 e^{-0.05 \cdot 2}+500,000 e^{-0.05 \cdot 3} & = \\
500,000\left(1+e^{-0.05 \cdot 1}+e^{-0.05 \cdot 2}+e^{-0.05 \cdot 3}\right) & \approx \$ 1,858,387.41
\end{aligned}
$$

The "loss" on our winnings is 2 million minus the present value or a whopping $\$ 141,612.59$.
Exercise 6: Find the PV of an income stream paying out continuously at a rate of $\$ 750$ per year for 10 years, assuming an interest rate of 5%.

Answer: We have

$$
\begin{aligned}
P V & =\int_{0}^{10} 750 e^{-0.05 t} d t \\
& =\left.750 \cdot \frac{1}{-0.05} e^{-0.05 t}\right|_{0} ^{10} \\
& =-\frac{750}{0.05}\left(e^{-0.5}-1\right) \\
& \approx \$ 5,902.04
\end{aligned}
$$

Notice that this is substantially less than $\$ 7,500.00$, reflecting the loss of money caused by receiving payments over time rather than immediately.

Exercise 7: Find the PV of an investment that pays out continuously at a rate of $R(t)=\$ 1,000 e^{0.03 t}$ per year for 8 years, assuming an interest rate of 6%.
Answer: We have

$$
\begin{aligned}
P V & =\int_{0}^{8} 1000 e^{0.03 t} \cdot e^{-0.06 t} d t \\
& =\int_{0}^{8} 1000 e^{-0.03 t} d t \\
& =\left.1000 \cdot \frac{1}{-0.03} e^{-0.03 t}\right|_{0} ^{8} \\
& =-\frac{1000}{0.03}\left(e^{-0.24}-1\right) \\
& \approx \$ 7,112.40
\end{aligned}
$$

