
MATH 136-02, 136-03 Calculus 2, Fall 2018

Section 10.3: Convergence of Series with Positive Terms

In this section we learn some tests for determining whether an infinite series converges or diverges. In
general, it is not possible to find the explicit sum of a convergent series (exceptions are geometric and
telescoping series); the main goal is to determine whether it converges or not. The tests in this section
are only for series with positive terms.

The Integral Test

Suppose that
∞∑
n=1

an is an infinite series with an > 0 for each n. Let f : [1,∞) → R be the function

obtained by replacing the n in the formula for an with the variable x. Suppose that f(x) is a positive,
decreasing, and continuous function. Then

∞∑
n=1

an converges if and only if

∫ ∞
1

f(x) dx converges.

The idea behind the integral test is that a series with positive terms can be thought of as a
Riemann sum with rectangles of base 1 and heights an. Thus, the improper integral should be a good
approximation to the series. The integral and series converge or diverge together.

Example 1: Consider the infinite series
∞∑
n=1

1

n2
. We can apply the integral test by letting f(x) =

1

x2
.

Then f is a positive, decreasing, and continuous function for x ≥ 1. It is decreasing because f ′(x) =
−2x−1 < 0 for x ≥ 1. Since∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

x−2 dx = lim
b→∞
−1

x

∣∣∣∣b
1

= lim
b→∞
−1

b
+ 1 = 1 ,

the improper integral converges. Therefore, by the integral test, the series also converges. Note that
the series does not converge to the same value as the integral. In fact, the sum is actually π2/6, a
result that can be proved using Fourier Series.

Exercise 1: Use the integral test to determine whether the given series converges or diverges.

(a)
∞∑
n=1

1√
n

(b)
∞∑
n=1

1

n2 + 1

1



The p-series Test

The series
∞∑
n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

A series of the form
∞∑
n=1

1

np
is called a p-series. The p-series test follows directly from the integral

test and the power rule. The series
∞∑
n=1

1

n1.1
converges, while the series

∞∑
n=1

1

n0.9
diverges. The border

line case is p = 1, the all-important Harmonic Series. Of all the p-series, the Harmonic Series is the
slowest divergent series (the sum goes to infinity very, very slowly—as slowly as lnx goes to infinity).
The p-series test is particularly useful when applying the comparison test.

The Comparison Test

Suppose that {an} and {bn} are two sequences satisfying 0 ≤ an ≤ bn for each n.

If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges. Equivalently, if
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

This is pretty clear. Given two infinite series of positive terms, if the one with bigger terms
converges, so does the smaller one. The contrapositive is that if the smaller one diverges, than so
must the bigger one. It is worth pointing out that this theorem is still valid if the terms obey
0 ≤ an ≤ bn, for all n ≥ N for some natural number N . As long as the two series eventually
obey the inequality, then the conclusion holds. Remember, it is the tail of the infinite series that
matters not a finite number of terms at the start.

Example 2: Consider the infinite series
∞∑
n=1

3n

n3 + 1
. We can apply the comparison test with the series

∞∑
n=1

3

n2
, which converges by the p-series test (or see Example 1). The constant 3 pulls out because the

series is convergent. Let an = 3n
n3+1

and bn = 3
n2 . We must check that an ≤ bn or

3n

n3 + 1
≤ 3

n2
.

Multiplying through by n2(n3 + 1), this is equivalent to checking that 3n3 ≤ 3n3 + 3, which is clearly

true. Thus, since
∞∑
n=1

3

n2
converges (the bigger series), so does

∞∑
n=1

3n

n3 + 1
, using the comparison test.

Exercise 2: Use the comparison test to determine whether the given series converges or diverges.
Hint: What is the largest value that sin2 θ can be?

∞∑
n=1

sin2 n

n4

2



The Limit Comparison Test

Suppose that {an} and {bn} are two positive sequences and that lim
n→∞

an
bn

= L exists.

• If L > 0, then
∞∑
n=1

an converges if and only if
∞∑
n=1

bn converges.

• If L =∞ and
∞∑
n=1

an converges, then
∞∑
n=1

bn converges.

• If L = 0 and
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

The limit comparison test is useful when we are comparing a given series to a known convergent
series, but the regular comparison test doesn’t work (i.e., the inequality goes in the wrong direction).
Taking the limit of the ratio of the terms of the two series is often an easier way to prove convergence.

Example 3: Consider the infinite series
∞∑
n=2

n3

n5 − 2n2 + 4
. If we just focus on the higher order terms,

this series looks like
n3

n5
=

1

n2
. But the comparison test does not work because

n3

n5 − 2n2 + 4
>

1

n2
.

However, if we let an = 1
n2 and bn = n3

n5−2n2+4
, then

lim
n→∞

an
bn

= lim
n→∞

1

n2
· n

5 − 2n2 + 4

n3
= lim

n→∞

n5 − 2n2 + 4

n5
= lim

n→∞
1− 2

n3
+

4

n5
= 1 > 0.

Thus, by the limit comparison test, our series converges because
∞∑
n=2

1

n2
converges.

Exercises: Using an appropriate test for convergence, determine whether the given infinite series
converges or diverges.

3.
∞∑
n=1

1

n+ 4

4.
∞∑
n=1

1

n 2n

5.
∞∑
n=2

1

n lnn
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