
MATH 136-02, 136-03 Calculus 2, Fall 2018

Section 10.2: Summing an Infinite Series

This section begins our study of infinite series. With a sequence, we are interested in whether an
ordered list of numbers approaches a limit (converges). For an infinite series, we sum an ordered list
of numbers and asks whether the sum converges. This is somewhat confusing at first glance so we will
be sure to make a precise definition. Then we will learn how to sum two types of series: a geometric
series and a telescoping series. We also discuss a famous series in mathematics called the Harmonic
Series.

Example 1: An Infinite Geometric Series

Consider the infinite sum
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ · · ·

The · · · means to keep adding forever. However, it also means that the pattern continues. Notice that
each term is precisely 1/2 the preceding term, so the terms are getting considerably smaller. Even
though we are adding an infinite amount of numbers, the numbers are getting very small, very quickly.
What does this sum equal? Is it finite or infinite?

This series is an example of a geometric series because the terms come from a geometric sequence.
The common ratio between terms is r = 1/2. It turns out that this series converges to a sum of 1.
The sum of the first two terms is 1/2 + 1/4 = 0.75, and the sum of the first 10 terms is

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

1024
= 0.9990234375 .

The sum of the first 1000 terms is

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

21000
= 1− 1

21000
.

In fact, if we add the first n terms of the series, we obtain the sum

sn = 1− 1

2n
.

No matter how many terms we add in the series, we are always slightly less than 1. Since lim
n→∞

sn = 1,

we say the infinite series converges to the sum 1.

Sigma Σ Notation

The previous series can be written more compactly as
∞∑
n=1

1

2n
or

∞∑
n=1

(
1

2

)n

. Here, n is the index

of the series and Σ (“Sigma”) indicates that we should plug in n = 1, 2, 3, . . . and sum together the
results. It is important to remember that while a sequence is a list of numbers, a series is a sum.

In general we write
∞∑
n=1

an = a1 + a2 + a3 + a4 + · · ·

to represent an infinite series. Each term of the series is denoted by an. A series may start with a
different value of the index other than n = 1.
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Definition: Convergence of an Infinite Series

The infinite series
∞∑
n=1

an converges to the sum S if the sequence of partial sums sn = a1+a2+· · ·+an

converges to S. In this case, we say that

∞∑
n=1

an = S if and only if lim
n→∞

sn = S.

If the sequence sn diverges, then the series is called divergent.

This definition is extremely important. Note how convergence of the infinite series depends on
whether the sequence of partial sums converges or diverges. In the example above, the partial sum of
the geometric series was sn = 1− 1

2n
. This is a finite sum; it is the sum of the first n terms of the series.

Since lim
n→∞

1− 1

2n
= 1, the geometric series converges to 1 and we are justified in claiming

∞∑
n=1

1

2n
= 1.

One useful metaphor for infinite series (thanks to Prof. Levandosky) is an infinite shopping cart
checking out at a mathematical supermarket. Each item you purchase is a term an. As the scanner
records the price of each item, the subtotal (the sum of all items purchased thus far) is displayed on
the screen for you and the cashier to see. The list of numbers being displayed on the screen is precisely
the sequence of partial sums. Each item you purchase increases your total (an > 0 and sn > sn−1),
while any coupons or store credit you have reduces your total (an < 0 and sn < sn−1). As you watch
your infinite number of purchases go by, the question is whether the sequence of sub-totals converges
or not. If it diverges, you either get in an argument with the cashier over the total price (because it
never settles down to a particular value) or you go broke (because the sum is infinite).

Most theorems about infinite series can be deduced by applying the correct theorem about converg-
ing sequences to the sequence of partial sums. Note that it is the tail of the infinite series that matters
when trying to determine convergence. Even if the first 2 million terms in the series are extremely
large, the series can still converge if the remaining terms approach zero fast enough.

Exercise 1: Consider the infinite series
∞∑
n=1

(−1)n+1. Write out the first six terms in the series and

then compute the first six partial sums: s1, s2, s3, s4, s5, and s6. Does the series converge or diverge?
Explain.

Due to the simple structure of the terms in a geometric series (the next term is r times the previous
one), we can obtain explicit formulas for the partial sums and for the infinite sum itself. This is actually
quite rare. For most convergent series, it is far easier to show convergence than it is to find an explicit
formula for the sum of the series.
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Sum of a Geometric Series

A geometric series with first term a and ratio r satisfying |r| < 1 converges to the sum

∞∑
n=0

arn = a+ ar + ar2 + ar3 + · · · =
a

1− r
.

If |r| ≥ 1, the series diverges.

To derive the formula for the sum of a geometric series, we use a nice trick that highlights the
underlying geometric principle. Beginning with the partial sum

sn = a+ ar + ar2 + · · ·+ arn−1, (1)

multiply both sides by the common ratio r. Making sure to multiply every term on the right-hand
side of equation (1) by r, we obtain

rsn = ar + ar2 + ar3 + · · ·+ arn. (2)

Notice that nearly all of the terms on the right-hand side of equation (2) also appear on the right-hand
side of equation (1). If we subtract equation (2) from equation (1), these terms cancel out (even the
terms represented by the · · · are canceled). We then obtain

sn − rsn = a− arn, (3)

an expression that is easily solved for sn. Factoring out the sn on the left-hand side of equation (3) and
dividing both sides by 1 − r gives an explicit formula for the sum of the first n terms in a geometric
series:

sn =
a− arn

1− r
. (4)

Since lim
n→∞

rn = 0 whenever |r| < 1, we find that lim
n→∞

sn =
a

1− r
, which verifies the formula for the

sum of a convergent infinite geometric series.

Exercise 2: Find the sum of each of the following geometric series or state that the series diverges.

(a) 2 +
4

3
+

8

9
+

16

27
+ · · ·

(b) 8− 2 +
1

2
− 1

8
+

1

32
−+ · · ·

(c)
∞∑
n=1

(
−3

5

)n

(d)
∞∑
n=0

(π
3

)n
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Telescoping Series

In addition to geometric series, there is another type of series for which it is possible to find the
exact sum of the series. Consider the series

∞∑
n=1

1

n(n+ 1)
=

1

2
+

1

6
+

1

12
+

1

20
+ · · · .

This series is not geometric because there is no common ratio between terms. However, notice that

1

2
= 1− 1

2
,

1

6
=

1

2
− 1

3
,

1

12
=

1

3
− 1

4
, and

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

where the last expression can be obtained using partial fractions. It follows that the partial sum for
the series can be simplified to

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
,

since the second term in each parentheses is canceled out by the first term in the following parentheses.
The series is called telescoping because the middle terms all cancel out and the partial sum collapses
so nicely (think of an old-school telescope that sea captains once used). Since lim

n→∞
sn = 1, the series

converges to 1.

Exercise 3: Use partial fractions to find the sum of each telescoping series:

(a)
∞∑
n=0

3

(n+ 1)(n+ 2)
=

3

2
+

3

6
+

3

12
+

3

20
+ · · ·

(b)
∞∑
n=1

1

n(n+ 2)
=

1

3
+

1

8
+

1

15
+

1

24
+ · · ·

The following gives a test for the divergence of a series. If the terms being added to an infinite
series do not approach zero, then the partial sums will continue to grow (or perhaps oscillate), and
the series will diverge. From the shopping cart perspective, if we keep adding items whose price is not
getting close to zero, then our total will either grow forever or perhaps oscillate continually.
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The nth Term Divergence Test

If lim
n→∞

an 6= 0, then the infinite series
∞∑
n=1

an diverges.

Exercise 4: Use the nth term test to explain why the following series diverge:

(a)
∞∑
n=0

n

3n− 1

(b)
∞∑
n=1

(−1)n
n2

n2 + 1

(c) cos 1 + cos
1

2
+ cos

1

3
+ cos

1

4
+ · · ·

Important: The converse of the nth term test is false! Just because the terms in an infinite series
go to zero, does not mean the series converges. The counterexample is the all-important Harmonic
Series, which has terms converging to zero but still diverges to infinity (see below). Having the terms
in an infinite series head to zero is necessary for convergence but not sufficient. You need to apply
some other test to check for convergence.

The Harmonic Series

Consider the series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · · .

This is a very famous series in mathematics called the Harmonic Series. It is particularly surprising
because the nth term is heading to zero, yet the series still diverges. To see this, consider the following
calculation:

∞∑
n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

)
+ · · ·

> 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16
+

1

16

)
+ · · ·

= 1 +
1

2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · ·

Thus, the partial sums continue to grow by at least 1
2

each time we group another 2n terms of the
series. It follows that lim

n→∞
sn =∞ and the Harmonic Series diverges.

Note: Mathematics is full of surprising, yet irrefutable, facts such as this. If you think the previous
counter-example is cool, you should become a math major. :)
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One final property of infinite series is that they obey the usual laws of addition, provided that the
series are convergent.

Linearity of Convergent Series

If
∞∑
n=1

an = A and
∞∑
n=1

bn = B, then

(i)
∞∑
n=1

can = cA for any c ∈ R (constants pull out)

(ii)
∞∑
n=1

(an + bn) = A+B (the series of a sum equals the sum of the series)
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