
MATH 136-02, 136-03 Calculus 2, Fall 2018

Sections 10.6 and 10.7: Power Series and Taylor Series

The final two sections on infinite series concern series where the terms being summed are functions
of x, specifically power functions of the form (x− c)n for some constant c. These series, called power
series, play an important role in applications of calculus since they are excellent approximations to
more complicated functions such as ex and sin x.

Definition: Power Series

A power series centered at c is an infinite series of the form

F (x) =
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · · .

Here, the center of the series is the constant c and the variable is x.

Example 1: The infinite series

F (x) =
∞∑
n=0

1

n!
(x− 3)n = 1 + (x− 3) +

1

2!
(x− 3)2 +

1

3!
(x− 3)3 +

1

4!
(x− 4)4 + · · · (1)

is a power series centered at c = 3. Note that 0! = 1 by convention. The series

G(x) =
∞∑
n=1

1

n
xn = x+

1

2
x2 +

1

3
x3 +

1

4
x4 + · · · (2)

is a power series centered at c = 0. Note that although this series begins at n = 1, it is still considered
a power series.

The main question when studying power series is to determine for which values of x the series
converges. For example, in the series defined in equation (1) above, we have

F (5) =
∞∑
n=0

1

n!
(5− 3)n =

∞∑
n=0

2n

n!
,

which converges by the ratio test (see Example 1 on the worksheet for Section 10.5). This allows us
to define the function F at x = 5 to be the unique number that the infinite series converges to. On
the other hand, in the series defined in equation (2) above, we have

G(1) =
∞∑
n=1

1

n
(1)n =

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · ,

which diverges because it is the Harmonic Series. Therefore, G(1) is undefined.

While it may seem daunting to find the set of all x for which a given power series converges, it turns
out that there is a unique value R ≥ 0, called the radius of convergence, such that the power series
converges absolutely for |x − c| < R and diverges when |x − c| > R. In other words, for any power
series centered at c, there is an interval of convergence centered at c of the form c−R < x < c+R
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for which the power series converges. The series may or may not converge at the endpoints x = c−R
or x = c+R (see figure above). If R = 0, then the series converges only when x = c. If R =∞, then
the power series converges for all x. The radius of convergence can be found using the ratio test.

Example 2: Use the ratio test to determine where F (x) =
∞∑
n=0

1

n!
(x− 3)n converges.

Let an = (x−3)n
n!

. We apply the ratio test regarding x as some fixed value. We find

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(x−3)n+1

(n+1)!

(x−3)n
n!

∣∣∣∣∣∣ =

∣∣∣∣(x− 3)n+1

(n+ 1)!

∣∣∣∣ · ∣∣∣∣ n!

(x− 3)n

∣∣∣∣ =
|(x− 3)n · (x− 3)|

(n+ 1) · n!
· n!

|(x− 3)n|
=
|x− 3|
n+ 1

.

Then, since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x− 3|
n+ 1

= |x− 3| · lim
n→∞

1

n+ 1
= 0, the power series converges for any x.

The solution is (−∞,∞) or R. The radius of convergence is R =∞.

Example 3: Use the ratio test to determine where G(x) =
∞∑
n=1

1

n
xn converges.

Let an = xn

n
. We apply the ratio test regarding x as some fixed value. We find∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ x
n+1

n+1
xn

n

∣∣∣∣∣ =

∣∣∣∣ xn+1

n+ 1

∣∣∣∣ · ∣∣∣ nxn ∣∣∣ =
|xn · x|
n+ 1

· n

|xn|
= |x| · n

n+ 1
.

Then, since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x| · n

n+ 1
= |x| · lim

n→∞

n

n+ 1
= |x|, the power series converges for any x

satisfying |x| < 1 by the ratio test. The radius of convergence is R = 1. This shows that the power
series converges for −1 < x < 1 and diverges for |x| > 1. However, we must check the endpoints x = 1
and x = −1 directly to determine if the series converges at these points. We have already seen that

G(1) =
∞∑
n=1

1

n
diverges since it is the Harmonic Series. On the other hand, notice that

G(−1) =
∞∑
n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
−+ · · ·

converges by the Alternating Series Test (it is −1 times the Alternating Harmonic Series). We conclude
that the power series G(x) converges for −1 ≤ x < 1 or [−1, 1).
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Exercises: Find the interval of convergence for each of the following power series. Be sure to check
the endpoints.

1.
∞∑
n=0

xn

2n

2.
∞∑
n=1

(x− 1)n
1

n 3n

3.
∞∑
n=1

(x− 1)n
1

n2 3n
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Next we go in the opposite direction. How do we find the power series expansion for a given func-
tion f(x)? This material is covered in Section 10.7. We will assume that f is differentiable, that is, f
has derivatives of all orders. It turns out that power series may be differentiated term by term over
their interval of convergence (except at the endpoints). This leads to the following definition:

Definition: Taylor Series

The Taylor series expansion of a function f(x) about x = c is given by

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n = f(c) + f ′(c)(x− c) +

f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · · .

Here, f (n) represents the nth derivative of f . We define f 0(c) = f(c).

The Maclaurin series for f(x) is the special case where c = 0:

f(x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · . (3)

We note that each of the series expansions above are only defined on the interval of convergence
c−R < x < c+R (and possibly at the endpoints), otherwise the expansions are invalid. For the sake
of time, we will restrict our attention to Maclaurin series.

Example 4: Find the Maclaurin series for f(x) = ex.

This is one of the most famous series in mathematics. Since f ′(x) = ex, f ′′(x) = ex, f ′′′(x) = ex

and more generally, f (n)(x) = ex, we see that f (n)(0) = 1 for any n. Using formula (3), we have

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · .

This series converges for any x, so the formula is valid for all real numbers. You should memorize
this formula. Notice that if we differentiate both sides of the formula, we obtain a valid statement:

d

dx
(ex) =

d

dx

(
1 + x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

)
= 0 + 1 + x+

x2

2!
+ · · ·+ xn−1

(n− 1)!
+ · · · = ex

Exercise 4: Show that the Maclaurin series expansion for f(x) = sinx is given by

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+− · · · .
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The Maclaurin series for cosx is given by

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+− · · · .

The series expansions for both sinx and cos x converge for all real numbers. Notice that the series for
sinx contains only odd powers while the series for cosx has only even powers. This agrees with the
fact that sinx is an odd function, while cosx is even.

Another important example follows from the formula for the sum of an infinite geometric series:

1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + · · · .

Notice that the right-hand side is just a geometric series with first term a = 1 and ratio r = x. Thus,

as long as |r| = |x| < 1, this series converges to the sum S =
a

1− r
=

1

1− x
.

Shortcuts for Finding Maclaurin Series

Given the Maclaurin series for a function f(x), it is possible to find the Maclaurin series for f(g(x)
by replacing x with g(x) in the series expansion.

Example 5: Find the Maclaurin series for f(x) = e−x
2
.

Replacing x by −x2 in the Maclaurin series for ex, we find

e−x
2

=
∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)nx2n

n!
= 1− x2 +

x4

2!
− x6

3!
+
x8

4!
−+ · · · .

Since the original series converges for all x, so does the Maclaurin series for e−x
2
.

Exercises:

5. Find the Maclaurin series expansion for f(x) = cos(3x2). State the first four terms of the series.

6. Find the Maclaurin series expansion for f(x) =
1

1 + 3x
. State the first four terms of the series

and give the interval of convergence.
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7. Using the Maclaurin series for ex, sin x, and cosx, derive Euler’s formula:

eiθ = cos θ + i sin θ .

Plug in θ = π to show that

eiπ + 1 = 0 ,

widely regarded as one of the most remarkable and elegant formulas ever discovered.

Hint: Use the fact that i2 = −1, i3 = −i, i4 = 1, . . . .
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