
MATH 136-02, 136-03 Calculus 2, Fall 2018

Sections 10.6 and 10.7: Power Series and Taylor Series

Solutions

Exercises: Find the interval of convergence for each of the following power series. Be sure to check
the endpoints.

1.
∞∑
n=0

xn

2n

Answer: The center of the series is c = 0. Let an = xn

2n
. We apply the ratio test regarding x as

some fixed value. We find∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ x
n+1

2n+1

xn

2n

∣∣∣∣∣ =

∣∣∣∣xn+1

2n+1

∣∣∣∣ · ∣∣∣∣2nxn
∣∣∣∣ =

|xn · x|
2n · 2

· 2n

|xn|
=
|x|
2
.

Then, since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x|
2

=
|x|
2

, we solve |x|/2 < 1 to find where the power series

converges (by the ratio test). This yields |x| < 2 and thus the radius of convergence is R = 2.
The power series converges for −2 < x < 2 and diverges for |x| > 2. However, we must check
the endpoints x = 2 and x = −2 directly to determine if the series converges at these points.

Substituting x = −2 into the original series gives

∞∑
n=0

(−2)n

2n
=

∞∑
n=0

(−1)n ,

which diverges by the nth term test. Substituting x = 2 into the original series gives

∞∑
n=0

2n

2n
=

∞∑
n=0

1 ,

which also diverges by the nth term test. Therefore, the interval of convergence for the power
series is −2 < x < 2 or (−2, 2).

2.
∞∑
n=1

(x− 1)n
1

n 3n

Answer: The center of the series is c = 1. Let an = (x−1)n
n3n

. We apply the ratio test regarding
x as some fixed value. We find∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(x−1)n+1

(n+1)3n+1

(x−1)n
n3n

∣∣∣∣∣∣ =
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=
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3
· n
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.

Then, since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x− 1|
3
· n

n+ 1
=
|x− 1|

3
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n

n+ 1
=
|x− 1|

3
· 1 ,

1



we solve |x − 1|/3 < 1 to find where the power series converges (by the ratio test). This yields
|x − 1| < 3 and thus the radius of convergence is R = 3. The power series converges for
−2 < x < 4 and diverges for |x − 1| > 3. However, we must check the endpoints x = −2 and
x = 4 directly to determine if the series converges at these points.

Substituting x = −2 into the original series gives

∞∑
n=1

(−3)n

n 3n
=

∞∑
n=1

(−1)n

n
,

which converges by the Alternating Series Test (it is −1 times the Alternating Harmonic Series).
Substituting x = 4 into the original series gives

∞∑
n=1

3n

n 3n
=

∞∑
n=1

1

n
,

which diverges since it is the Harmonic Series (a p-series with p = 1). Therefore, the interval of
convergence for the power series is −2 ≤ x < 4 or [−2, 4).

3.
∞∑
n=1

(x− 1)n
1

n2 3n

Answer: Notice the similarity with the previous problem. The center of the series is c = 1. Let
an = (x−1)n

n23n
. We apply the ratio test regarding x as some fixed value. We find∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(x−1)n+1

(n+1)23n+1

(x−1)n
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∣∣∣∣∣∣ =

∣∣∣∣ (x− 1)n+1

(n+ 1)23n+1

∣∣∣∣ · ∣∣∣∣ n23n

(x− 1)n

∣∣∣∣ =
|(x− 1)n · (x− 1)|

(n+ 1)23n · 3
· n23n

|(x− 1)n|

=
|x− 1|

3
· n2

n2 + 2n+ 1
.

Then, since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x− 1|
3
· n2

n2 + 2n+ 1
=
|x− 1|

3
· lim
n→∞

n2

n2 + 2n+ 1
=
|x− 1|

3
· 1 ,

we solve |x − 1|/3 < 1 to find where the power series converges (by the ratio test). This yields
|x − 1| < 3 and thus the radius of convergence is R = 3. The power series converges for
−2 < x < 4 and diverges for |x − 1| > 3. However, we must check the endpoints x = −2 and
x = 4 directly to determine if the series converges at these points.

Substituting x = −2 into the original series gives

∞∑
n=1

(−3)n

n2 3n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Alternating Series Test or by the Absolute Convergence Test. Substitut-
ing x = 4 into the original series gives

∞∑
n=1

3n

n2 3n
=

∞∑
n=1

1

n2
,

which converges since it is a p-series with p = 2. Therefore, the interval of convergence for the
power series is −2 ≤ x ≤ 4 or [−2, 4].
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Exercise 4: Show that the Maclaurin series expansion for f(x) = sinx is given by

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+− · · · .

Answer: Since f(x) = sin x, we have f ′(x) = cos x, f ′′(x) = − sinx, f ′′′(x) = − cosx, f iv(x) = sin x,
and then the pattern repeats. Thus, f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f iv(0) = 0, f v(0) =
1, f vi(0) = 0, . . .. The pattern 0, 1, 0,−1 repeats itself over and over again. Using the Maclaurin series
formula, we find

sinx = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f iv(0)

4!
x4 + · · ·

= x+
−1

3!
x3 +

1

5!
x5 +

−1

7!
x7 +− · · ·

= x− x3

3!
+
x5

5!
− x7

7!
+− · · · .

Notice that the even powers vanish from the series because the even derivatives at x = 0 all evaluate

to zero. Recalling that an odd integer can be written as 2n+ 1, we have sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

5. Find the Maclaurin series expansion for f(x) = cos(3x2). State the first four terms of the series.

Answer: Replacing x by 3x2 in the Maclaurin series for cosx, we have

cos(3x2) =
∞∑
n=0

(−1)n
(3x2)2n

(2n)!
=

∞∑
n=0

(−1)n
32nx4n

(2n)!
= 1− 9x4

2!
+

81x8

4!
− 729x12

6!
+− · · ·

= 1− 9x4

2
+

27x8

8
− 81x12

80
+− · · · .

6. Find the Maclaurin series expansion for f(x) =
1

1 + 3x
. State the first four terms of the series

and give the interval of convergence.

Answer: Replacing x by −3x (notice the negative sign!) in the Maclaurin series for
1

1− x
, we

have
1

1 + 3x
=

∞∑
n=0

(−3x)n = 1− 3x+ (−3x)2 + (−3x)3 + (−3x)4 + · · ·

= 1− 3x+ 9x2 − 27x3 + 81x4 −+ · · · .

Notice that the series is geometric with ratio r = −3x so the series converges for |r| = |−3x| < 1,
which simplifies to |x| < 1/3. Thus the interval of convergence is −1/3 < x < 1/3.
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7. Using the Maclaurin series for ex, sin x, and cosx, derive Euler’s formula:

eiθ = cos θ + i sin θ .

Plug in θ = π to show that

eiπ + 1 = 0 ,

widely regarded as one of the most remarkable and elegant formulas ever discovered.

Hint: Use the fact that i2 = −1, i3 = −i, i4 = 1, . . . .

Answer: Replacing x by iθ in the Maclaurin series for ex and using the hint, we find

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · ·

= 1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
− θ6

6!
− iθ

7

7!
· · ·

= 1− θ2

2!
+
θ4

4!
− θ6

6!
+− · · ·+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+− · · ·

)
= cos θ + i sin θ .

Plugging in θ = π, we find eiπ = cosπ + i sin π = −1 + i · 0 = −1. Therefore eiπ + 1 = 0.
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