MATH 136-02, 136-03 Calculus 2, Fall 2018
 Sections 10.6 and 10.7: Power Series and Taylor Series
 Solutions

Exercises: Find the interval of convergence for each of the following power series. Be sure to check the endpoints.

1. $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$

Answer: The center of the series is $c=0$. Let $a_{n}=\frac{x^{n}}{2^{n}}$. We apply the ratio test regarding x as some fixed value. We find

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{x^{n+1}}{2^{n+1}}}{\frac{x^{n}}{2^{n}}}\right|=\left|\frac{x^{n+1}}{2^{n+1}}\right| \cdot\left|\frac{2^{n}}{x^{n}}\right|=\frac{\left|x^{n} \cdot x\right|}{2^{n} \cdot 2} \cdot \frac{2^{n}}{\left|x^{n}\right|}=\frac{|x|}{2} .
$$

Then, since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{2}=\frac{|x|}{2}$, we solve $|x| / 2<1$ to find where the power series converges (by the ratio test). This yields $|x|<2$ and thus the radius of convergence is $R=2$. The power series converges for $-2<x<2$ and diverges for $|x|>2$. However, we must check the endpoints $x=2$ and $x=-2$ directly to determine if the series converges at these points.
Substituting $x=-2$ into the original series gives

$$
\sum_{n=0}^{\infty} \frac{(-2)^{n}}{2^{n}}=\sum_{n=0}^{\infty}(-1)^{n}
$$

which diverges by the nth term test. Substituting $x=2$ into the original series gives

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{2^{n}}=\sum_{n=0}^{\infty} 1
$$

which also diverges by the nth term test. Therefore, the interval of convergence for the power series is $-2<x<2$ or $(-2,2)$.
2. $\sum_{n=1}^{\infty}(x-1)^{n} \frac{1}{n 3^{n}}$

Answer: The center of the series is $c=1$. Let $a_{n}=\frac{(x-1)^{n}}{n 3^{n}}$. We apply the ratio test regarding x as some fixed value. We find

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{(x-1)^{n+1}}{(n+1)^{n+1}}}{\frac{(x-1)^{n}}{n 3^{n}}}\right|=\left|\frac{(x-1)^{n+1}}{(n+1) 3^{n+1}}\right| \cdot\left|\frac{n 3^{n}}{(x-1)^{n}}\right|=\frac{\left|(x-1)^{n} \cdot(x-1)\right|}{(n+1) 3^{n} \cdot 3} \cdot \frac{n 3^{n}}{\left|(x-1)^{n}\right|}=\frac{|x-1|}{3} \cdot \frac{n}{n+1} .
$$

Then, since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{3} \cdot \frac{n}{n+1}=\frac{|x-1|}{3} \cdot \lim _{n \rightarrow \infty} \frac{n}{n+1}=\frac{|x-1|}{3} \cdot 1,
$$

we solve $|x-1| / 3<1$ to find where the power series converges (by the ratio test). This yields $|x-1|<3$ and thus the radius of convergence is $R=3$. The power series converges for $-2<x<4$ and diverges for $|x-1|>3$. However, we must check the endpoints $x=-2$ and $x=4$ directly to determine if the series converges at these points.
Substituting $x=-2$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges by the Alternating Series Test (it is -1 times the Alternating Harmonic Series). Substituting $x=4$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges since it is the Harmonic Series (a p-series with $p=1$). Therefore, the interval of convergence for the power series is $-2 \leq x<4$ or $[-2,4)$.
3. $\sum_{n=1}^{\infty}(x-1)^{n} \frac{1}{n^{2} 3^{n}}$

Answer: Notice the similarity with the previous problem. The center of the series is $c=1$. Let $a_{n}=\frac{(x-1)^{n}}{n^{2} 3^{n}}$. We apply the ratio test regarding x as some fixed value. We find

$$
\begin{gathered}
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{\frac{(x-1)^{n+1}}{(n+1)^{2} 3^{n+1}}}{\frac{(x-1)^{n}}{n^{2} 3^{n}}}\right|=\left|\frac{(x-1)^{n+1}}{(n+1)^{2} 3^{n+1}}\right| \cdot\left|\frac{n^{2} 3^{n}}{(x-1)^{n}}\right|=\frac{\left|(x-1)^{n} \cdot(x-1)\right|}{(n+1)^{2} 3^{n} \cdot 3} \cdot \frac{n^{2} 3^{n}}{\left|(x-1)^{n}\right|} \\
=\frac{|x-1|}{3} \cdot \frac{n^{2}}{n^{2}+2 n+1}
\end{gathered}
$$

Then, since

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-1|}{3} \cdot \frac{n^{2}}{n^{2}+2 n+1}=\frac{|x-1|}{3} \cdot \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=\frac{|x-1|}{3} \cdot 1
$$

we solve $|x-1| / 3<1$ to find where the power series converges (by the ratio test). This yields $|x-1|<3$ and thus the radius of convergence is $R=3$. The power series converges for $-2<x<4$ and diverges for $|x-1|>3$. However, we must check the endpoints $x=-2$ and $x=4$ directly to determine if the series converges at these points.
Substituting $x=-2$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{2} 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

which converges by the Alternating Series Test or by the Absolute Convergence Test. Substituting $x=4$ into the original series gives

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2} 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which converges since it is a p-series with $p=2$. Therefore, the interval of convergence for the power series is $-2 \leq x \leq 4$ or $[-2,4]$.

Exercise 4: Show that the Maclaurin series expansion for $f(x)=\sin x$ is given by

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+-\cdots .
$$

Answer: Since $f(x)=\sin x$, we have $f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x, f^{\prime \prime \prime}(x)=-\cos x, f^{i v}(x)=\sin x$, and then the pattern repeats. Thus, $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{\prime \prime \prime}(0)=-1, f^{i v}(0)=0, f^{v}(0)=$ $1, f^{v i}(0)=0, \ldots$ The pattern $0,1,0,-1$ repeats itself over and over again. Using the Maclaurin series formula, we find

$$
\begin{aligned}
\sin x & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{i v}(0)}{4!} x^{4}+\cdots \\
& =x+\frac{-1}{3!} x^{3}+\frac{1}{5!} x^{5}+\frac{-1}{7!} x^{7}+-\cdots \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+-\cdots
\end{aligned}
$$

Notice that the even powers vanish from the series because the even derivatives at $x=0$ all evaluate to zero. Recalling that an odd integer can be written as $2 n+1$, we have $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$.
5. Find the Maclaurin series expansion for $f(x)=\cos \left(3 x^{2}\right)$. State the first four terms of the series.

Answer: Replacing x by $3 x^{2}$ in the Maclaurin series for $\cos x$, we have

$$
\begin{gathered}
\cos \left(3 x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(3 x^{2}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{2 n} x^{4 n}}{(2 n)!}=1-\frac{9 x^{4}}{2!}+\frac{81 x^{8}}{4!}-\frac{729 x^{12}}{6!}+-\cdots \\
=1-\frac{9 x^{4}}{2}+\frac{27 x^{8}}{8}-\frac{81 x^{12}}{80}+-\cdots
\end{gathered}
$$

6. Find the Maclaurin series expansion for $f(x)=\frac{1}{1+3 x}$. State the first four terms of the series and give the interval of convergence.
Answer: Replacing x by $-3 x$ (notice the negative sign!) in the Maclaurin series for $\frac{1}{1-x}$, we have

$$
\begin{gathered}
\frac{1}{1+3 x}=\sum_{n=0}^{\infty}(-3 x)^{n}=1-3 x+(-3 x)^{2}+(-3 x)^{3}+(-3 x)^{4}+\cdots \\
=1-3 x+9 x^{2}-27 x^{3}+81 x^{4}-+\cdots .
\end{gathered}
$$

Notice that the series is geometric with ratio $r=-3 x$ so the series converges for $|r|=|-3 x|<1$, which simplifies to $|x|<1 / 3$. Thus the interval of convergence is $-1 / 3<x<1 / 3$.
7. Using the Maclaurin series for $e^{x}, \sin x$, and $\cos x$, derive Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

Plug in $\theta=\pi$ to show that

$$
e^{i \pi}+1=0
$$

widely regarded as one of the most remarkable and elegant formulas ever discovered. Hint: Use the fact that $i^{2}=-1, i^{3}=-i, i^{4}=1, \ldots$.

Answer: Replacing x by $i \theta$ in the Maclaurin series for e^{x} and using the hint, we find

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\cdots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-i \frac{\theta^{7}}{7!} \cdots \\
& =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+-\cdots+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+-\cdots\right) \\
& =\cos \theta+i \sin \theta
\end{aligned}
$$

Plugging in $\theta=\pi$, we find $e^{i \pi}=\cos \pi+i \sin \pi=-1+i \cdot 0=-1$. Therefore $e^{i \pi}+1=0$.

