MATH 135 Calculus 1, Spring 2016

Worksheet for Sections 2.6 and 2.7

2.6 Trigonometric Limits

This section focuses on two key limits involving $\sin x$ and $\cos x$ that are important for finding the slope of the tangent line to each function. These limits are proven through an important and intuitive theorem called the **Squeeze Theorem** (discussed previously in Section 2.3).

Theorem 0.1 (The Squeeze Theorem) Suppose that $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at x = a) and that

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

Then $\lim_{x \to a} g(x) = L$.

The Squeeze Theorem states that if one function is "squeezed" between two others having a common limit, then the inner function takes on the same limit. It is best understood visually (see Figure 2 on p. 89 of the text).

Exercise 0.2 Suppose that g(x) satisfies $\cos x \le g(x) \le x^2 + 1$ for x-values near x = 0. Use the Squeeze Theorem to find $\lim_{x\to 0} g(x)$.

Two important trigonometric limits are

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$
 (1)

These can be checked by using a calculator (set it to radians!) and plugging in values very close to 0. Note that each limit takes the form of $\frac{0}{0}$, an indeterminate form.

To prove the first limit in Equation (1), we use the fact that (see Figure 1)

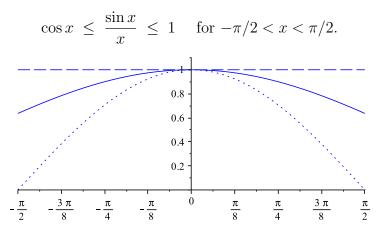


Figure 1: The graphs of the functions y = 1 (dashed), $y = \sin(x)/x$ (solid), and $y = \cos x$ (dotted).

Since $\lim_{x \to 0} \cos x = 1$ and $\lim_{x \to 0} 1 = 1$, by the Squeeze Theorem, we have that $\lim_{x \to 0} \frac{\sin x}{x} = 1$, as desired.

Exercise 0.3 Using the limit $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, show that $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$. **Hint:** Multiply the top and bottom of $\frac{1 - \cos \theta}{\theta}$ by $1 + \cos \theta$, simplify, and break the fraction into the product of two fractions, one of which is $\frac{\sin \theta}{\theta}$. Then use the fact that the limit of a product is the product of the limits.

Exercise 0.4 Evaluate $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. **Hint:** The limit of the product equals the product of the limits.

Exercise 0.5 Use a calculator to evaluate $\lim_{t\to 0} \frac{\sin(7t)}{t}$. Then verify your answer by making the substitution x = 7t. **Hint:** If t is tending toward 0, and x = 7t, then what is x approaching? Try and rewrite the limit using only the variable x so that the fraction $\frac{\sin x}{x}$ is present.

Exercise 0.6 Evaluate $\lim_{\theta \to 0} \frac{\sin(9\theta)}{5\theta}$.

2.7 Limits at Infinity

The expression $\lim_{x\to\infty} f(x)$ means to calculate the function values of f as x gets larger and larger, and see if they approach a limit. As with usual limits, the answer may be a real number L, ∞ , $-\infty$, or the limit may not exist. For example,

$$\lim_{x \to \infty} x^2 = \infty$$

because as x gets larger, the value of x^2 gets even larger, and is therefore going to ∞ . On the other hand, we have

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

because as x gets larger, 1/x gets smaller and smaller. We say that the function f(x) = 1/x has a **horizontal asymptote** at y = 0 because the graph of f approaches the horizontal line y = 0 as x tends to ∞ .

The expression $\lim_{x \to -\infty} f(x)$ means to calculate the function values of f as x gets larger and larger, but negative. For example, we have

$$\lim_{x \to -\infty} x^2 = \infty, \quad \lim_{x \to -\infty} x^3 = -\infty, \quad \text{and} \quad \lim_{x \to -\infty} e^x = 0.$$

Exercise 0.7 Evaluate each of the following limits, if they exist.

a.
$$\lim_{x \to \infty} e^{2x}$$

b. $\lim_{x \to \infty} e^{-2x}$

c.
$$\lim_{x \to \infty} -x^4 + 3x^2 + 7$$

- **d.** $\lim_{x \to \infty} \sin x$
- **e.** $\lim_{x \to -\infty} 2x^2 3x^3$
- **f.** $\lim_{x \to \infty} \tan^{-1} x$
- g. $\lim_{x \to -\infty} \tan^{-1} x$

Limits of Rational Functions

Consider the following limit:

$$\lim_{x \to \infty} \frac{3x^2 + 5x - 2}{4x^2 + 7}$$

To find it, we divide the top and bottom of the fraction by the **highest power in the denominator**, which in this case is x^2 . This gives

$$\lim_{x \to \infty} \frac{3x^2 + 5x - 2}{4x^2 + 7} = \lim_{x \to \infty} \frac{\frac{3x^2}{x^2} + \frac{5x}{x^2} - \frac{2}{x^2}}{\frac{4x^2}{x^2} + \frac{7}{x^2}} = \lim_{x \to \infty} \frac{3 + \frac{5}{x} - \frac{2}{x^2}}{4 + \frac{7}{x^2}} = \frac{3}{4}$$

since each remaining fraction in the numerator and denominator is heading to 0 as x tends to ∞ .

Exercise 0.8 Evaluate $\lim_{x \to \infty} \frac{6x^4 - 5x^3 + 2x}{4x^2 - 7x^4 + 1}$.

Exercise 0.9 Evaluate
$$\lim_{x \to \infty} \frac{6x^4 - 5x^3 + 2x}{4x^5 - 7x^4 + 1}$$
.

Exercise 0.10 Evaluate $\lim_{x\to\infty} \frac{\sqrt{16x^4+10}}{3x^2+1}$. **Hint:** Ignore the 10 in the numerator. (Why is it of to do this?)

Exercise 0.11 Evaluate $\lim_{x\to\infty} \frac{e^x + 3e^{-x}}{2e^x - e^{-x}}$. **Hint:** What is the "highest" power in the denominator? Try dividing top and bottom of the fraction by it.

Exercise 0.12 Evaluate
$$\lim_{x \to \infty} \tan^{-1} \left(\frac{5x^3 - 2x^2 + 3}{5x^3 + 9x^2 - 3x + \pi} \right).$$