MATH 135-04 Calculus 1

Exam #1 SOLUTIONS October 1, 2015 Prof. G. Roberts

1. The **ENTIRE** graph of f(x) is shown below. Use it to answer each of the following questions: (18 pts.)

(a) What is the range of f?

Answer: $[-2,0] \cup [1,3]$. The range is found by projecting the graph onto the *y*-axis. Note that there is a gap in the function and that no *y*-values between 0 and 1 have pre-images in the domain.

(b) Is f a one-to-one function? Explain.

Answer: No, it fails the horizontal line test. Specifically, there are output *y*-values of the function that have more than one pre-image x in the domain. For example, f(-1.5) = f(-0.5) = -0.5.

(c) Suppose that $g(x) = \cos x$. Find the value of $(f \circ g)(9\pi)$. Answer: 0.

$$(f \circ g)(9\pi) = f(g(9\pi)) = f(\cos(9\pi)) = f(-1) = 0.$$

- (d) Evaluate each of the following limits: (i) $\lim_{x\to 0^+} f(x) = 1.5$ (ii) $\lim_{x\to 0^-} f(x) = -1$
 - (iii) $\lim_{x\to 0} f(x)$ does not exist because the left- and right-hand limits are not equal.

2. The Absolute Value Function (12 pts.)

(a) Carefully sketch the graph of g(x) = -|x-1| + 2 on the axes below.

Answer: Take the usual graph of the absolute value function (the V) and shift it to the right by one unit, reflect it over the x-axis, and then shift it up by 2 units. Plot a few points to get the slope of the lines correct.

(b) Find all x satisfying $|3x + 6| \ge 4$. You may express your answer in interval notation or using inequalities.

Answer: $(-\infty, -10/3] \cup [-2/3, \infty)$.

Based on the definition of the absolute value function, there are two different cases. First, if 3x+6 > 0, then |3x+6| = 3x+6. Solving the inequality $3x+6 \ge 4$ leads to $x \ge -2/3$. The second case is when 3x+6 < 0 (or when x < -2), which is a completely separate case from the first one (no overlap). Then we have |3x+6| = -(3x+6) = -3x-6. Solving the inequality $-3x-6 \ge 4$ gives $x \le -10/3$. Thus there are two possible intervals that x could be in and satisfy the given inequality: $x \ge -2/3$ **OR** $x \le -10/3$. In interval notation this is $(-\infty, -10/3] \cup [-2/3, \infty)$.

3. Carefully sketch the graph of the following piecewise function: (10 pts.)

$$f(x) = \begin{cases} x & \text{if } x < -1\\ (x+1)^2 & \text{if } -1 \le x < 2\\ 13 - 2x & \text{if } 2 \le x < 5 \end{cases}$$

Answer: Be sure to draw each part of the graph over the correct interval. The first piece is a line with slope 1; the second piece is a parabola opening up with vertex at (-1, 0); and the final piece is another line, but with slope -2. The graph has a jump discontinuity at x = -1 but is actually continuous at x = 2 because the left- and right-hand limits are both equal to f(2) = 9.

4. Trig is Fun (20 pts.)

- (a) The period of the function g(x) = 4 sin(3πx) is 2/3.
 Answer: Using the formula that the period of the function y = sin(bx) is 2π/b, we substitute b = 3π and simplify to obtain 2/3.
- (b) State the domain and range of the function $h(x) = \cos^{-1}(x)$.

Domain: [-1,1] Range: $[0,\pi]$

Answer: The domain of $\cos^{-1}(x)$ is equal to the range of its inverse function, $\cos x$. Since the cosine of an angle is the x-coordinate on the unit circle, then it is always between -1 and 1. The range of $\cos^{-1}(x)$ is defined to be the angles between 0 and π . This interval is chosen in order to make the cosine function one-to-one (recall that a function must be one-to-one in order to have an inverse.) (c) Find all angles θ between 0 and 2π that satisfy $\cos(\theta) = -1/2$. Give your answer(s) in radians.

Answer: $2\pi/3$, $4\pi/3$. First, we find the reference angle β , so that $\cos(\beta) = 1/2$. Using a 30–60–90 right triangle, or from memory, $\beta = 60^{\circ} = \pi/3$. Since $\cos(\theta) < 0$, we must chose θ to be in the second or third quadrant. Thus, the solution is $\theta = \pi - \pi/3 = 2\pi/3$ and $\theta = \pi + \pi/3 = 4\pi/3$.

(d) Suppose that $\tan \theta = -5/12$ and that $\pi/2 < \theta < \pi$. Find the values of $\sin \theta$ and $\sec \theta$. Answer: $\sin \theta = 5/13$ and $\sec \theta = -13/12$.

Using SOH-CAH-TOA, draw a right triangle with sides 5 and 12, with the angle θ across from the side of length 5. By the Pythagorean Theorem, the hypotenuse has length 13. It follows that $\sin \theta = 5/13$ (opp./hyp.) and $\cos \theta = -12/13$ (adj./hyp.; negative because θ is in the second quadrant). Since $\sec \theta = 1/\cos \theta$, we have $\sec \theta = -13/12$.

Note: There was a typo on the exam which incorrectly stated that $\tan \theta = 5/12$ (missing negative sign). Because this was inconsistent with $\pi/2 < \theta < \pi$, no points were deducted for the answer $\sec \theta = 13/12$.

5. Average and Instantaneous Velocity (10 pts.)

(a) Suppose that $s(t) = 5t^2 - 3t$ represents the distance in feet a ball has traveled after t seconds. Compute the average velocity over the interval [1, 4] (give the correct units). Answer: 22 feet per second.

Using the formula average velocity is $(s(t_2) - s(t_1))/(t_2 - t_1)$, we compute the average velocity to be

$$\frac{s(4) - s(1)}{4 - 1} = \frac{(80 - 12) - (5 - 3)}{4 - 1} = \frac{66}{3} = 22 \text{ ft/sec.}$$

(b) Fill in the blanks:

If s(t) represents the position function of a moving object, then the instantaneous velocity at the time t = 3 is defined as the <u>slope</u> of the <u>tangent line</u> to the graph of s(t) at the point t = 3.

6. Calculus Potpourri (30 pts.)

(a) The function $g(x) = \cos x + x^2 - 3$ is even.

(odd, even, neither odd nor even, both odd and even)

Answer: Since $\cos x, x^2$ and -3 are all even functions (each graph is symmetric with respect to y-axis), the sum is also even. In other words, g(-x) = g(x) and thus g is an even function.

(b) Simplify $\log_3(27) + \ln(e^{15})$.

Answer: 18. We have $\log_3(27) = 3$ since $3^3 = 27$. We also have $\ln(e^{15}) = 15$ since $\ln(x)$ and e^x are inverses. Thus, the answer is 3 + 15 = 18.

(c) Find the equation of the line passing through the point (-2,3) and perpendicular to the line 6x - 3y = 2015.

Answer: y = (-1/2)x + 2. First, we compute the slope of the line 6x - 3y = 2015 by writing it in slope-intercept form: y = 2x - 2015/3. Thus, m = 2. The slope of a line perpendicular to this has slope $m_{\perp} = -1/2$. Therefore, our line has the form y = (-1/2)x + b. To find b, we substitute x = -2 and y = 3 into the previous equation to obtain $3 = (-1/2) \cdot -2 + b$, which gives b = 2.

(d) Complete the square to find the minimum value of the function $Q(x) = 2x^2 - 6x + 11$. Answer: 13/2 or 6.5. To complete the square, we first factor out a 2, leaving the 11 outside the parentheses.

$$Q(x) = 2(x^2 - 3x + __) + 11 + __.$$

Next, we determine the constant to add inside the parentheses by taking half of -3 and squaring. This yields 9/4. We add 9/4 inside the parentheses which means that we are really adding $2 \cdot 9/4 = 9/2$ to the function. To balance this out, we subtract 9/2 outside the parentheses:

$$Q(x) = 2\left(x^2 - 3x + \frac{9}{4}\right) + 11 - \frac{9}{2} = 2\left(x - \frac{3}{2}\right)^2 + \frac{13}{2}.$$

Since the graph of Q(x) is a parabola opening up, the minimum value of the function is the y-coordinate of the vertex of the parabola. The vertex is (3/2, 13/2) so the minimum value is 13/2. Another way to see this is to observe that the term in the parentheses is zero only when x = 3/2. Thus, the minimum of the function occurs at x = 3/2 and is found as Q(3/2) = 13/2.

(e) Find the exact solution (no decimals) to the equation $\ln(5+2x) = \pi$.

Answer: The **exact** solution is $x = (e^{\pi} - 5)/2$. The first step is to raise both sides to the base *e* because e^x is the inverse of $\ln(x)$. This gives

$$e^{\ln(5+2x)} = e^{\pi}$$
 or $5+2x = e^{\pi}$.

Next, subtract 5 from both sides and then divide by 2. There is no need (or use) for a calculator on this problem.

(f) Evaluate $\lim_{t\to 0} \frac{\sin(5t)}{4t}$.

Answer: 5/4 or 1.25. Using a calculator to evaluate the limit, plug in *t*-values very close, but **not** equal to 0. For instance plugging in $t = \pm 0.01$ into the function $\sin(5t)/4t$ gives 1.2494792, while plugging in $t = \pm 0.0001$ gives 1.249999948. Notice that the results are the same whether you plug in *t*-values to the left or right of 0. It appears that the limit is 1.25 = 5/4, a fact that we will soon learn to prove rigorously.