MATH 135-04 Calculus 1
 Exam \#1 SOLUTIONS October 1, $2015 \quad$ Prof. G. Roberts

1. The ENTIRE graph of $f(x)$ is shown below. Use it to answer each of the following questions: (18 pts.)

(a) What is the range of f ?

Answer: $[-2,0] \cup[1,3]$. The range is found by projecting the graph onto the y-axis. Note that there is a gap in the function and that no y-values between 0 and 1 have pre-images in the domain.
(b) Is f a one-to-one function? Explain.

Answer: No, it fails the horizontal line test. Specifically, there are output y-values of the function that have more than one pre-image x in the domain. For example, $f(-1.5)=f(-0.5)=-0.5$.
(c) Suppose that $g(x)=\cos x$. Find the value of $(f \circ g)(9 \pi)$.

Answer: 0.

$$
(f \circ g)(9 \pi)=f(g(9 \pi))=f(\cos (9 \pi))=f(-1)=0
$$

(d) Evaluate each of the following limits:
(i) $\lim _{x \rightarrow 0+} f(x)=1.5$
(ii) $\lim _{x \rightarrow 0-} f(x)=-1$
(iii) $\lim _{x \rightarrow 0} f(x)$ does not exist because the left- and right-hand limits are not equal.
2. The Absolute Value Function (12 pts.)
(a) Carefully sketch the graph of $g(x)=-|x-1|+2$ on the axes below.

Answer: Take the usual graph of the absolute value function (the V) and shift it to the right by one unit, reflect it over the x-axis, and then shift it up by 2 units. Plot a few points to get the slope of the lines correct.

(b) Find all x satisfying $|3 x+6| \geq 4$. You may express your answer in interval notation or using inequalities.

Answer: $(-\infty,-10 / 3] \cup[-2 / 3, \infty)$.
Based on the definition of the absolute value function, there are two different cases. First, if $3 x+6>0$, then $|3 x+6|=3 x+6$. Solving the inequality $3 x+6 \geq 4$ leads to $x \geq-2 / 3$. The second case is when $3 x+6<0$ (or when $x<-2$), which is a completely separate case from the first one (no overlap). Then we have $|3 x+6|=-(3 x+6)=-3 x-6$. Solving the inequality $-3 x-6 \geq 4$ gives $x \leq-10 / 3$. Thus there are two possible intervals that x could be in and satisfy the given inequality: $x \geq-2 / 3$ OR $x \leq-10 / 3$. In interval notation this is $(-\infty,-10 / 3] \cup[-2 / 3, \infty)$.
3. Carefully sketch the graph of the following piecewise function: (10 pts.)

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x<-1 \\
(x+1)^{2} & \text { if }-1 \leq x<2 \\
13-2 x & \text { if } 2 \leq x<5
\end{array}\right.
$$

Answer: Be sure to draw each part of the graph over the correct interval. The first piece is a line with slope 1 ; the second piece is a parabola opening up with vertex at $(-1,0)$; and the final piece is another line, but with slope -2 . The graph has a jump discontinuity at $x=-1$ but is actually continuous at $x=2$ because the left- and right-hand limits are both equal to $f(2)=9$.

4. Trig is Fun (20 pts.)
(a) The period of the function $g(x)=4 \sin (3 \pi x)$ is $2 / 3$.

Answer: Using the formula that the period of the function $y=\sin (b x)$ is $2 \pi / b$, we substitute $b=3 \pi$ and simplify to obtain $2 / 3$.
(b) State the domain and range of the function $h(x)=\cos ^{-1}(x)$.

Domain: $[-1,1]$
Range: $[0, \pi]$
Answer: The domain of $\cos ^{-1}(x)$ is equal to the range of its inverse function, $\cos x$. Since the cosine of an angle is the x-coordinate on the unit circle, then it is always between -1 and 1. The range of $\cos ^{-1}(x)$ is defined to be the angles between 0 and π. This interval is chosen in order to make the cosine function one-to-one (recall that a function must be one-to-one in order to have an inverse.)
(c) Find all angles θ between 0 and 2π that satisfy $\cos (\theta)=-1 / 2$. Give your answer(s) in radians.
Answer: $2 \pi / 3,4 \pi / 3$. First, we find the reference angle β, so that $\cos (\beta)=1 / 2$. Using a $30-60-90$ right triangle, or from memory, $\beta=60^{\circ}=\pi / 3$. Since $\cos (\theta)<0$, we must chose θ to be in the second or third quadrant. Thus, the solution is $\theta=\pi-\pi / 3=2 \pi / 3$ and $\theta=\pi+\pi / 3=4 \pi / 3$.
(d) Suppose that $\tan \theta=-5 / 12$ and that $\pi / 2<\theta<\pi$. Find the values of $\sin \theta$ and $\sec \theta$. Answer: $\sin \theta=5 / 13$ and $\sec \theta=-13 / 12$.
Using SOH-CAH-TOA, draw a right triangle with sides 5 and 12 , with the angle θ across from the side of length 5. By the Pythagorean Theorem, the hypotenuse has length 13. It follows that $\sin \theta=5 / 13$ (opp./hyp.) and $\cos \theta=-12 / 13$ (adj./hyp.; negative because θ is in the second quadrant). Since $\sec \theta=1 / \cos \theta$, we have $\sec \theta=-13 / 12$.
Note: There was a typo on the exam which incorrectly stated that $\tan \theta=5 / 12$ (missing negative sign). Because this was inconsistent with $\pi / 2<\theta<\pi$, no points were deducted for the answer $\sec \theta=13 / 12$.

5. Average and Instantaneous Velocity (10 pts.)

(a) Suppose that $s(t)=5 t^{2}-3 t$ represents the distance in feet a ball has traveled after t seconds. Compute the average velocity over the interval [1,4] (give the correct units).
Answer: 22 feet per second.
Using the formula average velocity is $\left(s\left(t_{2}\right)-s\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right)$, we compute the average velocity to be

$$
\frac{s(4)-s(1)}{4-1}=\frac{(80-12)-(5-3)}{4-1}=\frac{66}{3}=22 \mathrm{ft} / \mathrm{sec}
$$

(b) Fill in the blanks:

If $s(t)$ represents the position function of a moving object, then the instantaneous velocity at the time $t=3$ is defined as the slope of the tangent line to the graph of $s(t)$ at the point $t=3$.

6. Calculus Potpourri (30 pts.)

(a) The function $g(x)=\cos x+x^{2}-3$ is even. (odd, even, neither odd nor even, both odd and even)
Answer: Since $\cos x, x^{2}$ and -3 are all even functions (each graph is symmetric with respect to y-axis), the sum is also even. In other words, $g(-x)=g(x)$ and thus g is an even function.
(b) Simplify $\log _{3}(27)+\ln \left(e^{15}\right)$.

Answer: 18. We have $\log _{3}(27)=3$ since $3^{3}=27$. We also have $\ln \left(e^{15}\right)=15 \operatorname{since} \ln (x)$ and e^{x} are inverses. Thus, the answer is $3+15=18$.
(c) Find the equation of the line passing through the point $(-2,3)$ and perpendicular to the line $6 x-3 y=2015$.
Answer: $y=(-1 / 2) x+2$. First, we compute the slope of the line $6 x-3 y=2015$ by writing it in slope-intercept form: $y=2 x-2015 / 3$. Thus, $m=2$. The slope of a line perpendicular to this has slope $m_{\perp}=-1 / 2$. Therefore, our line has the form $y=(-1 / 2) x+b$. To find b, we substitute $x=-2$ and $y=3$ into the previous equation to obtain $3=(-1 / 2) \cdot-2+b$, which gives $b=2$.
(d) Complete the square to find the minimum value of the function $Q(x)=2 x^{2}-6 x+11$. Answer: $13 / 2$ or 6.5 . To complete the square, we first factor out a 2 , leaving the 11 outside the parentheses.

$$
Q(x)=2\left(x^{2}-3 x+\ldots\right)+11+
$$

Next, we determine the constant to add inside the parentheses by taking half of -3 and squaring. This yields $9 / 4$. We add $9 / 4$ inside the parentheses which means that we are really adding $2 \cdot 9 / 4=9 / 2$ to the function. To balance this out, we subtract $9 / 2$ outside the parentheses:

$$
Q(x)=2\left(x^{2}-3 x+\frac{9}{4}\right)+11-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^{2}+\frac{13}{2} .
$$

Since the graph of $Q(x)$ is a parabola opening up, the minimum value of the function is the y-coordinate of the vertex of the parabola. The vertex is $(3 / 2,13 / 2)$ so the minimum value is $13 / 2$. Another way to see this is to observe that the term in the parentheses is zero only when $x=3 / 2$. Thus, the minimum of the function occurs at $x=3 / 2$ and is found as $Q(3 / 2)=13 / 2$.
(e) Find the exact solution (no decimals) to the equation $\ln (5+2 x)=\pi$.

Answer: The exact solution is $x=\left(e^{\pi}-5\right) / 2$. The first step is to raise both sides to the base e because e^{x} is the inverse of $\ln (x)$. This gives

$$
e^{\ln (5+2 x)}=e^{\pi} \quad \text { or } \quad 5+2 x=e^{\pi} .
$$

Next, subtract 5 from both sides and then divide by 2. There is no need (or use) for a calculator on this problem.
(f) Evaluate $\lim _{t \rightarrow 0} \frac{\sin (5 t)}{4 t}$.

Answer: 5/4 or 1.25. Using a calculator to evaluate the limit, plug in t-values very close, but not equal to 0 . For instance plugging in $t= \pm 0.01$ into the function $\sin (5 t) / 4 t$ gives 1.2494792 , while plugging in $t= \pm 0.0001$ gives 1.249999948 . Notice that the results are the same whether you plug in t-values to the left or right of 0 . It appears that the limit is $1.25=5 / 4$, a fact that we will soon learn to prove rigorously.

