MATH 135-04, Calculus 1, Fall 2015 Important Limit Theorems from Section 2.3

Suppose that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist. Then

- 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \quad (limit of the sum = sum of the limits)$
- 2. $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \quad (limit of the difference = difference of the limits)$
- 3. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ for any constant c (constants pull out)
- 4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \quad (limit of the product = product of the limits)$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0 \quad (limit of the quotient = quotient of the limits)$$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \text{ where } n \text{ is any positive integer} \quad (this follows from 4.)$$

- 7. $\lim_{x \to a} c = c$ for any constant c (the limit of a constant is itself)
- 8. $\lim_{x \to a} x = a$
- 9. $\lim_{x \to a} x^n = a^n$
- 10. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ where n is a positive integer. (If n is even, we assume that a > 0.)
- 11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer. (If *n* is even, we assume that $\lim_{x \to a} f(x) > 0$.)
- 12. $\lim_{x \to a} [f(x)]^{p/r} = [\lim_{x \to a} f(x)]^{p/r}$, where p and r are integers with $r \neq 0$.

Direct Substitution Property If f is a polynomial or a rational function and a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$. (Just plug it in!)

Limit Existence Theorem $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$. (*The left- and right-hand limits must both exist and be equal for the general limit to exist.*)

The Squeeze Theorem (Section 2.6) If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then $\lim_{x \to a} g(x) = L.$