MATH 135 Calculus 1, Fall 2015

Worksheet for Sections 3.2 and 3.3

3.2 The Derivative as a Function

Recall that the derivative of a function at a point gives the slope of the tangent line at that point. In other words, f'(a) represents the slope of the tangent line at x = a. In this section, we vary the point a, and treat the derivative as a function in its own right, the function f'(x). The definition is the same as before, except that now we replace a by the variable x.

Definition 0.1 The derivative function f'(x) is given by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$
 (1)

The derivative function inputs the number x and outputs the slope of the tangent line to f at x. Recall that f'(x) does not exist if f has a corner, cusp, or vertical tangent line at x.

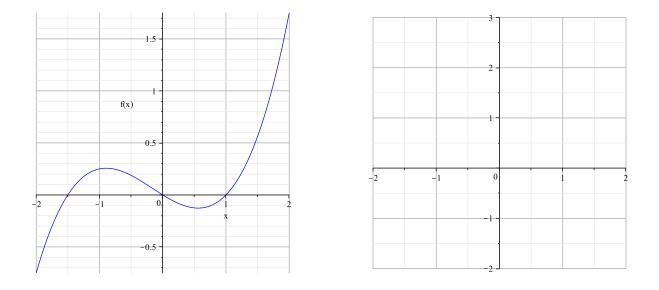
In class we used the limit definition to derive a few key derivative formulas. The symbol $\frac{d}{dx}$ (Leibniz notation) means to take the derivative with respect to x.

1. $\frac{d}{dx}(c) = 0$ (The derivative of a constant is zero.) 2. $\frac{d}{dx}(mx+b) = m$ (The derivative of a line is its slope.) 3. $\frac{d}{dx}(x^n) = nx^{n-1}$ for **any** real number *n*. (Power Rule) 4. $\frac{d}{dx}(cf(x)) = cf'(x)$ (Constants pull out.) 5. $\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$ and $\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$ (Linearity) 6. $\frac{d}{dx}(e^x) = e^x$ (The derivative of e^x is itself.) 7. $\frac{d}{dx}(b^x) = (\ln b) \cdot b^x$ (The derivative of an exponential function is a constant times itself.)

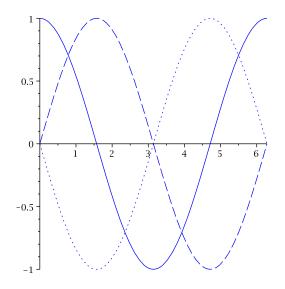
Exercise 0.2 Find the derivative of the function $g(x) = 6\sqrt{x} - \frac{3}{x^3} + 5e^x - \pi^4$.

Exercise 0.3 Using Equation (1), explain why $\frac{d}{dx}(e^x) = e^x$.

Exercise 0.4 Given the graph of f(x) below, sketch the graph of the derivative function f'(x) on the adjacent plot. Hint: Input x, output slope. Focus on the sign of the derivative first.



Exercise 0.5 The graph below shows three functions: f(x), g(x), and h(x). If f'(x) = g(x) and g'(x) = h(x), identify the graph that represents each function. Explain.



Exercise 0.6 If the graph of g(t) is a parabola, what type of graph will g'(t) be? Explain.

Exercise 0.7 Find
$$\frac{d}{dx}(e^x + x^e)$$
.

3.3 Product and Quotient Rules

There are two useful rules for computing the derivative of a product and quotient of two functions. Interestingly, Leibniz himself messed up the product rule in an early draft of his manuscript on calculus.

Theorem 0.8 (Product Rule) If f(x) and g(x) are differentiable functions, then so is their product $f(x) \cdot g(x)$. The derivative of the product is given by

$$\frac{d}{dx}\left(f(x)\cdot g(x)\right) = f'(x)g(x) + f(x)g'(x) .$$
(2)

Notice the symmetry in Formula (2) and that it is **not** the case that the derivative of the product equals the product of the derivatives. For instance, suppose we applied the Product Rule to take the derivative of $x \cdot x$. If we just multiplied the product of the derivatives, we would get

$$\frac{d}{dx}(x \cdot x) = \frac{d}{dx}(x) \cdot \frac{d}{dx}(x) = 1 \cdot 1 = 1???$$

But this is clearly incorrect since $x \cdot x = x^2$ and the derivative of x^2 is 2x by the Power Rule. A correct application of the Product Rule is as follows:

$$\frac{d}{dx}(x \cdot x) = \frac{d}{dx}(x) \cdot x + x \cdot \frac{d}{dx}(x) = 1 \cdot x + x \cdot 1 = 2x.$$

Exercise 0.9 Use the Product Rule to find f'(x) where $f(x) = (3x^2 + 1)e^x$. Simplify your answer.

Theorem 0.10 (Quotient Rule) If f(x) and g(x) are differentiable functions, then so is their quotient f(x)/g(x) as long as $g(x) \neq 0$. The derivative of the quotient is given by

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \,.$$
(3)

Exercise 0.11 Derive the Quotient Rule from the Product Rule. Start by letting $Q(x) = \frac{f(x)}{g(x)}$. Cross multiply, use the Product Rule, and then solve for Q'(x).

Exercise 0.12 Use the Quotient Rule to calculate the derivative of $\frac{1}{x^4}$ and check your answer against the result obtained from the Power Rule.

Exercise 0.13 If $g(x) = \frac{3x+1}{2x-5}$, find and simplify g'(x).

Exercise 0.14 If $h(x) = \frac{e^x}{x^2 + 1}$, find and simplify h'(x).