MATH 135 Quiz \#3 Solutions

September 20, 2013 Prof. G. Roberts

1. Consider the parametric equations $x=\sin (2 \theta), y=\cos (2 \theta), 0 \leq \theta \leq \pi$.
(a) Find a Cartesian equation for the curve using only x and y variables. (2 pts.)

Answer: $x^{2}+y^{2}=1$.
Recall the fundamental identity $\cos ^{2} t+\sin ^{2} t=1$, which holds for any angle t. In particular, it holds when $t=2 \theta$. Thus, $\sin ^{2}(2 \theta)+\cos ^{2}(2 \theta)=1$, which becomes $x^{2}+y^{2}=1$ upon substitution.
(b) Fill in the blanks: The curve traced out by the given parametric equations is a circle . It begins at the point $(0,1)$ and ends at the point $(0,1)$, and is traversed in the clockwise direction. (4 pts.)
Answer: We know the curve traced out is a circle because the Cartesian equation is $x^{2}+y^{2}=$ 1 , the equation of the unit circle. To find where it starts and ends, plug in $\theta=0$ and $\theta=\pi$, respectively, into the equations for x and y. At $\theta=0$, we have $x=\sin (2 \cdot 0)=\sin (0)=0$ and $y=\cos (2 \cdot 0)=\cos (0)=1$, so the curve begins at the point $(0,1)$. At $\theta=\pi$, we have $x=\sin (2 \cdot \pi)=\sin (2 \pi)=0$ and $y=\cos (2 \cdot \pi)=\cos (2 \pi)=1$, so the curve ends at the point $(0,1)$ as well.

The fact that the curve starts and ends at the same point suggests that the full circle is traced out. This is correct. Even though the parameter θ ranges from only 0 to $\pi=180^{\circ}, 2 \theta$ ranges from 0 to 2π, so the entire circle is traced out.
Finally, the circle is traced out clockwise because both x and y are positive for values of the parameter slightly greater than 0 . It follows that the curve starts at $(0,1)$ and then moves into the first quadrant (clockwise direction). Alternatively, one could plug in a good value like $\theta=\pi / 4$, and see that at $\theta=\pi / 4, x=\sin (2 \cdot \pi / 4)=\sin (\pi / 2)=1$ and $y=\cos (2 \cdot \pi / 4)=$ $\cos (\pi / 2)=0$, so the curve is passing through the point $(1,0)$ one-quarter of the way through its motion.
2. The position of a particle moving along a straight line is given by $s(t)=3 \sin t-2 \cos t$. Find the average velocity over the time interval $[\pi / 2, \pi]$. Be sure to simplify your answer. (4 pts.)
Answer: $-2 / \pi$
Using the formula for average velocity over the interval $\left[t_{1}, t_{2}\right], \frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$, we have

$$
\begin{aligned}
\frac{s(\pi)-s(\pi / 2)}{\pi-\pi / 2} & =\frac{(3 \sin (\pi)-2 \cos (\pi))-(3 \sin (\pi / 2)-2 \cos (\pi / 2))}{\pi-\pi / 2} \\
& =\frac{(3 \cdot 0-2 \cdot(-1))-(3 \cdot 1-2 \cdot 0)}{\pi / 2}=\frac{2-3}{\pi / 2} \\
& =\frac{-1}{\pi / 2} \\
& =\frac{-1}{1} \cdot \frac{2}{\pi}=-\frac{2}{\pi} .
\end{aligned}
$$

