MATH 135 Calculus 1, Fall 2013
 Worksheet on Related Rates (Section 4.1)

Key Idea: If two quantities are related by some equation and both are changing with respect to time, then we can use the given equation and the chain rule to "relate their rates." For example, suppose we have two quantities $x \equiv x(t)$ and $y \equiv y(t)$, which are related to each other by the equation

$$
2 \sin (x)=y^{2}-y-1 \quad \text { or } \quad 2 \sin (x(t))=(y(t))^{2}-y(t)-1
$$

Recall that $d x / d t$ is the rate of change of x with respect to time t, and $d y / d t$ is the rate of change of y with respect to time t. To obtain a relation between $d x / d t$ and $d y / d t$, we take the derivative of the above equation with respect to t and use the chain rule. This gives

$$
\begin{equation*}
2 \cos (x) \cdot \frac{d x}{d t}=2 y \cdot \frac{d y}{d t}-\frac{d y}{d t} \tag{1}
\end{equation*}
$$

Check equation (1) carefully to be sure you understand how the chain rule works here. It is similar to the techniques we use for implicit differentiation. Note that there are four unknown quantities in equation (1): $x, y, d x / d t$ and $d y / d t$. If we know the values for three of these quantities, we can plug into equation (1) to find the remaining quantity.

Some Useful Geometric Formulas: Many of the applications using related rates involve the area or volume of some common geometric objects. Some good formulas to know include:

$$
\begin{gathered}
\text { area of a circle } \quad A=\pi r^{2} \\
\text { volume of a sphere } \quad V=\frac{4}{3} \pi r^{3} \\
\text { volume of a cylinder } \quad V=\pi r^{2} h \\
\text { volume of a right-circular cone } \quad V=\frac{1}{3} \pi r^{2} h
\end{gathered}
$$

Example 1: (A Warm-up Problem) Suppose that each side of a square is increasing at a constant rate of $10 \mathrm{~cm} / \mathrm{sec}$. At what rate is the area increasing when the area of the square is 36 cm^{2} ?

Partial Solution: First, let's define our variables. Let x be the common side length of the square, and let A be the area of the square. We are given that $d x / d t=10$ and are asked to find $d A / d t$ when $A=36$. (Use the units given in the problem to help determine what each quantity represents, e.g., $\mathrm{cm} / \mathrm{sec}$ indicates a rate of change.) To finish the problem, write down an equation relating A and x, and then use the chain rule to derive a simple relation between $d x / d t$ and $d A / d t$. Plug the given information into your relation and solve for $d A / d t$. You should get an answer of $120 \mathrm{~cm}^{2} / \mathrm{sec}$.

Example 2: (Rock in a Pond) A rock is thrown into a pond and the resulting splash produces a circle whose radius increases at a constant rate of $40 \mathrm{~cm} / \mathrm{sec}$. How fast is the area of the circle increasing when the radius is 25 cm ? Give the exact answer.

Example 3: (The Sliding Ladder Problem) A ladder 5 feet in length is resting against a wall when suddenly, it begins to slide vertically down the wall. If the bottom of the ladder slides away from the wall at a constant rate of $0.5 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 3 feet away from the wall?

Example 4: (A Homework Problem) The length of a rectangle is increasing at a rate of $7 \mathrm{~cm} / \mathrm{sec}$ and its width is increasing at a rate of $5 \mathrm{~cm} / \mathrm{sec}$. When the length is 6 cm and the width is 10 cm , how fast is the area of the rectangle increasing?

