MATH 135 Calculus 1, Fall 2013

Worksheet on Exponential Functions (Section 1.5)

Some reminders: The general form of an exponential function is $f(x)=c \cdot a^{x}$ where a is called the base (c is an arbitrary constant). The base a is always assumed to be positive, that is, $a>0$. If $a>1$, we have an increasing function (exponential growth) that is concave up. If $a<1$, we have a decreasing function (exponential decay) that is also concave up. The key feature of an exponential function is that the ratio between successive function-values is constant. More specifically, $f(x+1) / f(x)=a$ is true for any x.

Examples: The functions $f(x)=2^{x}, g(t)=-17 \cdot 2^{t}, h(x)=400 \cdot(1 / 2)^{x}, q(x)=15 e^{x}$ and $P(t)=3^{-t / 2}$ are all examples of exponential functions. Note that

$$
3^{-t / 2}=\left(3^{-1 / 2}\right)^{t}
$$

by rules of exponents, so the function $P(t)=3^{-t / 2}$ has the base $a=3^{-1 / 2}=1 / \sqrt{3}$.
The special number e : There is a very, very important number in mathematics that is a particularly useful base. It is the irrational number $e \approx 2.718281828 \ldots$, which is the precise base so that the corresponding exponential function e^{x} has a tangent line of slope 1 at the point $(0,1)$. This rather strange definition leads to an important fact: the derivative of e^{x} is just e^{x}. This will make more sense later on in the course.

Population models: One of the primary real-world applications of exponential functions is their use in population models. In this case, we usually write $P(t)=P_{0} \cdot a^{t}$ where P_{0} is the initial quantity, a is the base, and t is a unit of time (e.g., years or seconds). Note that $P(0)=P_{0} \cdot a^{0}=P_{0}$ so P_{0} really does equal the initial amount.

Exercises:

1. Sketch the graphs of the functions $f(x)=2^{x}$ and $g(x)=(1 / 2)^{x}=2^{-x}$ on the same set of axes. Hint: Notice that $g(x)=f(-x)$.
2. Find the exponential function that passes through the points $(1,6)$ and $(3,54)$.
3. In 1958, the price of a bleacher seat at Fenway Park (go Red Sox!) was just $\$ 0.75$. In 2004, it had risen all the way to $\$ 20.00$. Using an exponential model of the form $P(t)=P_{0} \cdot a^{t}$, where P is the price of a bleacher seat and t is time in years, find a formula for the price of a bleacher seat at Fenway Park. What does your model imply the price should be this year? (For comparison, it is currently $\$ 28.00$.)
4. The number of cells in a particular virus doubles every three hours. If the initial population of cells is 1500 , find a formula for the number of cells after t hours. How many cells are there after 50 minutes?
