MATH 135 Calculus 1, Fall 2013

Handout with Exercises: Sections 1.1 and 1.2

The first chapter focuses on the major functions we will be studying throughout the semester. Many of these functions are excellent models for real-world phenomenon and are essential in the natural and social sciences. The key points of the first two sections are described in this handout. Much of this material is standard in pre-calculus courses. Please read the handout carefully and complete all the exercises.

1.1 Four Ways to Represent a Function

A function is a rule that assigns to each input element in the domain a unique output element in the range. The set of inputs to a function is called the domain, while the set of outputs is called the range. If a function $f: A \mapsto B$ maps from the set A to the set B (but not necessarily all of B), then we often call B the co-domain.

The four ways to represent a function referred to in the text are analytically (an explicit formula), graphically, numerically (table) and verbally (described in words). Typically, we will use x and t as the independent variables (inputs) and letters such as y, N, s (for position), v (for velocity) or a (for acceleration) as the dependent variables (outputs). When graphing a function, we will always assume the independent variable is plotted on the horizontal axis while the dependent variable is plotted on the vertical axis. In order to represent a function, a graph must pass the vertical line test, that is, any vertical line through the graph can only pass through at most one point. Otherwise, one input in the domain would have more than output in the range, violating the definition of a function.

We say that a function f is increasing on an interval I if

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} \text { in } I .
$$

Likewise, f is decreasing on an interval I if

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \quad \text { whenever } x_{1}<x_{2} \text { in } I .
$$

This is much easier to see visually. Increasing functions move upwards from left to right while decreasing functions move downwards from left to right.

A function that satisfies $f(-x)=f(x)$ for all x in its domain is called an even function. The graph of an even function is symmetric about the vertical axis. If a function satisfies $f(-x)=-f(x)$ for all x in its domain, then it is an odd function. The graph of an odd function is symmetric about the origin (after reflecting about both the horizontal and vertical axes, the same graph is obtained.)

Examples of even functions include $7, x^{2}, x^{4},|x|, x^{-2}, \cos x$. Examples of odd functions include $x, x^{3}, x^{5}, 1 / x, \sin x, \tan x$.

Exercise 0.1 Sketch the graph of an even function, an odd function and a function that is neither even nor odd. Can a function be both even and odd?

1.2 Mathematical Models: A Catalog of Essential Functions

Linear $f(x)=m x+b$
The constant m represents the slope, while b is the y-intercept (where the line crosses the vertical axis). If x increases by one unit, then $f(x)$ increases (or decreases) by m units. If $m>0$, then the line is increasing while if $m<0$, the line is decreasing. When $m=0$, the line has zero slope and is horizontal (a constant function). If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two points on a line, then the slope m of the line is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{\Delta y}{\Delta x} .
$$

Exponential $f(x)=c a^{x}$ or $N(t)=N_{0} a^{t}$
Note that the variable x (or t) is an exponent, hence the name of the function. The constant a is called the base and should always be positive. If $a>1$, then we have exponential growth while if $0<a<1$, then we have exponential decay. The constant c (or N_{0}) is arbitrary and represents the initial population in an exponential population model. The key difference between linear and exponential functions is that a constant change in x yields a constant change in y for a linear function, but a constant change in x yields a constant ratio in y for an exponential function. In other words, for an exponential function, if x increases by one unit, then $f(x)$ increases (or decreases) by a factor of a.

Piecewise Function

A function may be defined in different pieces by specifying which formula is to be used over a particular subset of the domain.

Exercise 0.2 Sketch the graph of the piecewise function

$$
g(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x<0 \\
2 & \text { if } 0 \leq x \leq 3 \\
4-x & \text { if } x>3
\end{array}\right.
$$

For example, over the domain $x<0$ (the negative horizontal axis), you should draw the graph of x^{2}.

Absolute Value $f(x)=|x|$

One particular piecewise function is critical in mathematics, the absolute value function. The graph of this function is a V with vertex at the origin. Although you may have learned that the absolute value is always positive, this hardly captures the meaning of this function. The absolute value is used to measure distance. For example, $|4|=4$ and $|-4|=4$ both indicate that the points 4 and -4 are each four units from 0 on the number line. The expression $|a-b|$ gives the distance between the numbers a and b on the number line. Thus, $|2-5|=3$ since 2 and 5 are 3 units apart on the number line. Similarly, $|3+4|=|3--4|=7$ since 3 and -4 are 7 units apart.

The piecewise definition for $|x|$ is

$$
|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Polynomial $p(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$
A polynomial is a sum of terms of the form $a x^{n}$ where a is any constant and $n \in \mathbb{N}=\{1,2,3, \ldots\}$. The degree of p is the largest power n in the expression. For example, $p(x)=3 x^{2}+x-4$ is a degree 2 polynomial or a quadratic function. Any quadratic has the form $p(x)=a x^{2}+b x+c$ for some constants a, b, c. The function $p(x)=5 x^{3}-x+\pi$ is a cubic polynomial (degree 3) and the function $p(x)=17 x+\sqrt{2} x^{3}-12 x^{4}$ is a quartic polynomial (degree 4).
Exercise 0.3 Find the quadratic function that is even and passes through the points $(-1,1)$ and $(2,13)$.

Rational $R(x)=p(x) / q(x)$
A rational function is simply the ratio of two polynomials. For example,

$$
R(x)=\frac{x^{2}-1}{x^{2}+1} \quad \text { and } \quad S(x)=\frac{x^{5}-12 x^{3}+6}{x^{2}-4}
$$

are each rational functions.
Exercise 0.4 Find the domain of each rational function $R(x)$ and $S(x)$ listed above.

Power Function $f(x)=x^{p}, p \in \mathbb{R}$
The power function generalizes the monomials in a polynomial by allowing for any kind of exponent, not just natural numbers. Some examples of power functions include:

$$
x^{2}, \sqrt{x}=x^{1 / 2}, x^{-1}=\frac{1}{x}, x^{\pi}, x^{\sqrt{2}}
$$

You should know the graphs of $1 / x$ and \sqrt{x}. Sketch them below.
Exercise 0.5 On the same axis, sketch the graphs of the functions $1 / x$ and \sqrt{x}. At what point(s) do they intersect?

Trig Functions $\sin x, \cos x, \tan x, \cot x, \sec x, \csc x$
Trigonometric functions are extremely important. There is an excellent chart on page 2 of the course text (very front of the book - you might want to tear it out and use it as a handy reference chart!) as well as an informative Appendix C on trigonometry in the back of the book. When writing $\sin x$ or $\cos x$, it is always assumed that x is measured in radians not degrees. An angle of 1 radian is equivalent to the angle which cuts off 1 unit of arc length of the unit circle. This is approximately 57°. The idea is to lay a piece of string of length equal to the radius along the outside of the circle. The angle obtained is equal to one radian (note the similarities between the terms "radius" and "radian"). The key formula to remember is that

$$
\pi \text { radians }=180^{\circ}
$$

This follows from the fact that the circumference of the unit circle (radius equals one) is 2π.
For a given angle θ, let l_{θ} represent the ray emanating from the origin that makes an angle of θ with the positive x-axis. It is important to remember that $\cos \theta$ equals the x-coordinate of the point of intersection between l_{θ} and the unit circle and that $\sin \theta$ equals the y-coordinate of this same point of intersection. Since the unit circle has the equation $x^{2}+y^{2}=1$, we quickly have the important identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Trig functions are called periodic functions because they repeat themselves after some time (called the period). The period of $\sin \theta$ and $\cos \theta$ is 2π.

The other trig functions are defined as follows:

$$
\tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad \text { and } \quad \csc x=\frac{1}{\sin x} .
$$

Exercise 0.6 Evaluate each of the following expressions without using a calculator: $\sin (\pi / 2), \cos (-\pi / 2)$, $\cos (15 \pi), \tan (\pi), \sec ^{2} \theta-\tan ^{2} \theta$. What is the domain and range of $\sin x$? of $\csc x$?

