MATH 134 Calculus 2 with FUNdamentals

Practice Exam \#2 SOLUTIONS

1. Let R be the region bounded by the curves $y=|x|$ and $y=12-x^{2}$.
(a) Sketch the region R in the $x y$-plane.

Answer:

To find where the two curves intersect, we first assume that $x>0$ and then solve $x=12-x^{2}$. By assuming that $x>0$, we can write $|x|=x$. Then, $x=12-x^{2}$ becomes $x^{2}+x-12=0$ or $(x+4)(x-3)=0$. It follows that $x=3$, since we assumed $x>0$ (or just check that $x=-4$ gives a y-value of 4 when $y=|x|$, but -4 if $y=12-x^{2}$). By symmetry, the curves intersect at $x=3$ and -3 , as shown in the figure.
(b) Find the area of the region R.

Answer: 45
Using symmetry, we find the area of the region from $x=0$ to $x=3$ and then double the result. We have

$$
\begin{aligned}
2 \int_{0}^{3} 12-x^{2}-x d x & =2\left(12 x-\frac{x^{3}}{3}-\left.\frac{x^{2}}{2}\right|_{0} ^{3}\right) \\
& =2(36-9-9 / 2-0) \\
& =2(27-9 / 2) \\
& =54-9=45
\end{aligned}
$$

2. Solids of Revolution: Give the exact answers (no decimals).
(a) Let A be the region under the graph of $f(x)=\sin x$ from $x=0$ to $x=\pi$. Find the volume of the solid of revolution obtained by rotating A about the x-axis.
Answer: $\frac{\pi^{2}}{2}$

We use the disc method because there is no gap between the region and the axis of rotation. The radius is the height of the function, $r=\sin x$. The volume is given by

$$
\begin{aligned}
\int_{0}^{\pi} \pi(\sin x)^{2} d x & =\pi \int_{0}^{\pi} \sin ^{2} x d x \\
& =\pi \int_{0}^{\pi} \frac{1}{2}(1-\cos (2 x)) d x \\
& =\left.\frac{\pi}{2}\left(x-\frac{1}{2} \sin (2 x)\right)\right|_{0} ^{\pi} \\
& =\frac{\pi}{2}\left(\pi-\frac{1}{2} \sin (2 \pi)-0+\frac{1}{2} \sin (0)\right) \\
& =\frac{\pi^{2}}{2}
\end{aligned}
$$

(b) Let B be the region enclosed by the graphs of $x=0, y=3$, and $y=x^{2}+2$. Find the volume of the solid of revolution obtained by rotating A about the x-axis.
Answer: $\frac{52 \pi}{15}$
See the figure below. Using the washer method, the outer radius is 3 (distance between green line and violet axis) and the inner radius is $x^{2}+2$ (distance between blue parabola and violet axis). Solving $3=x^{2}+2$ gives $x=1$ as an intersection point. Thus, the volume is given by

$$
\begin{aligned}
\pi \int_{0}^{1} 3^{2}-\left(x^{2}+2\right)^{2} d x & =\pi \int_{0}^{1} 9-\left(x^{4}+4 x^{2}+4\right) d x \\
& =\pi \int_{0}^{1} 5-x^{4}-4 x^{2} d x \\
& =\pi\left(5 x-\frac{x^{5}}{5}-\left.\frac{4 x^{3}}{3}\right|_{0} ^{1}\right) \\
& =\pi\left(5-\frac{1}{5}-\frac{4}{3}\right)=\frac{52 \pi}{15}
\end{aligned}
$$

3. Evaluate the following integrals using the appropriate method or combination of methods.
(a) $\int t^{3} \ln t d t$

Answer: Use integration by parts. Let $u=\ln t$ and $d v=t^{3} d t$. This leads to $d u=\frac{1}{t} d t$ and $v=\frac{1}{4} t^{4}$. The integration by parts formula then yields

$$
\begin{aligned}
\int t^{3} \ln t d t & =\frac{1}{4} t^{4} \ln t-\int \frac{1}{4} t^{4} \cdot \frac{1}{t} d t \\
& =\frac{1}{4} t^{4} \ln t-\frac{1}{4} \int t^{3} d t \\
& =\frac{1}{4} t^{4} \ln t-\frac{1}{16} t^{4}+c \\
& =\frac{t^{4}}{16}(4 \ln t-1)+c
\end{aligned}
$$

(b) $\int \sin ^{5} \theta d \theta$

Answer: The first step is to factor out $\sin \theta$ and use $\sin ^{2} \theta=1-\cos ^{2} \theta$. We have

$$
\begin{aligned}
\int \sin ^{5} \theta d \theta & =\int \sin \theta \cdot\left(\sin ^{2} \theta\right)^{2} d \theta \\
& =\int \sin \theta \cdot\left(1-\cos ^{2} \theta\right)^{2} d \theta \\
& =\int \sin \theta\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right) d \theta \\
& =-\int 1-2 u^{2}+u^{4} d u \quad \text { using } u=\cos \theta, d u=-\sin \theta d \theta \\
& =-u+\frac{2}{3} u^{3}-\frac{1}{5} u^{5}+c \\
& =-\cos \theta+\frac{2}{3} \cos ^{3} \theta-\frac{1}{5} \cos ^{5} \theta+c
\end{aligned}
$$

(c) $\int \frac{2 x+24}{(x-3)(x+2)} d x$

Answer: Use partial fractions. We seek constants A and B such that

$$
\frac{2 x+24}{(x-3)(x+2)}=\frac{A}{x-3}+\frac{B}{x+2} .
$$

Multiplying through by the LCD $(x-3)(x+2)$ gives

$$
2 x+24=A(x+2)+B(x-3)
$$

Next we plug in the roots $x=-2$ and $x=3$. Using $x=-2$ in the previous equation, we find $20=-5 B$ or $B=-4$. Likewise, setting $x=3$ in the previous equation gives $30=5 A$ or $A=6$. Thus, the integral transforms into

$$
\int \frac{6}{x-3}-\frac{4}{x+2} d x=6 \ln |x-3|-4 \ln |x+2|+c .
$$

4. Evaluate the integral $\int \frac{1}{\left(9-x^{2}\right)^{3 / 2}} d x$ using the trig substitution $x=3 \sin \theta$.

Answer: Letting $x=3 \sin \theta$, we have $d x=3 \cos \theta d \theta$ and $x^{2}=9 \sin ^{2} \theta$. Also, using the fundamental trig identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, the denominator simplifies to

$$
\left(9-9 \sin ^{2} \theta\right)^{3 / 2}=\left(9\left(1-\sin ^{2} \theta\right)\right)^{3 / 2}=9^{3 / 2}\left(\cos ^{2} \theta\right)^{3 / 2}=27 \cos ^{3} \theta
$$

We find

$$
\begin{aligned}
\int \frac{1}{\left(9-x^{2}\right)^{3 / 2}} d x & =\int \frac{1}{27 \cos ^{3} \theta} \cdot 3 \cos \theta d \theta \\
& =\frac{1}{9} \int \frac{1}{\cos ^{2} \theta} d \theta \\
& =\frac{1}{9} \int \sec ^{2} \theta d \theta \\
& =\frac{1}{9} \tan \theta+c \\
& =\frac{1}{9} \cdot \frac{x}{\sqrt{9-x^{2}}}+c=\frac{x}{9 \sqrt{9-x^{2}}}+c
\end{aligned}
$$

The final step comes from using right-triangle trig and drawing a right triangle with opposite $\operatorname{leg} x$ and hypotenuse 3. The remaining leg is $\sqrt{9-x^{2}}$ by the Pythagorean theorem (see Figure below).

5. Consider the two integrals below. One of these can be found using a u-substitution while the other requires trig substitution. Determine which is which and evaluate both integrals.
(a) $\int \frac{x}{\sqrt{x^{2}+4}} d x$
(b) $\int \frac{1}{\sqrt{x^{2}+4}} d x$

Answer: The first integral can be evaluated using a u-substitution with $u=x^{2}+4$, while the second requires trig substitution.

For (a), we let $u=x^{2}+4$ and then $d u=2 x d x$ or $d u / 2=x d x$. The integral becomes

$$
\int \frac{1}{\sqrt{u}} \cdot \frac{d u}{2}=\frac{1}{2} \int u^{-1 / 2} d u=\frac{1}{2} \cdot 2 u^{1 / 2}+c=\sqrt{x^{2}+4}+c .
$$

For (b), let $x=2 \tan \theta$. Then we have $d x=2 \sec ^{2} \theta d \theta$ and

$$
x^{2}+4=4 \tan ^{2} \theta+4=4\left(\tan ^{2} \theta+1\right)=4 \sec ^{2} \theta
$$

Thus, the integral transforms to

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 \sec ^{2} \theta}} \cdot 2 \sec ^{2} \theta d \theta & =\int \frac{1}{2 \sec \theta} \cdot 2 \sec ^{2} \theta d \theta \\
& =\int \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+c \quad \text { (\#14 on list of integral formulas) } \\
& =\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right|+c \quad \text { (right-triangle trig; see Figure below) } \\
& =\ln \left|\frac{\sqrt{x^{2}+4}+x}{2}\right|+c
\end{aligned}
$$

Since $x=2 \tan \theta$, we have $\tan \theta=\frac{x}{2}$ and $\sec \theta=\frac{1}{\cos \theta}=\frac{\sqrt{x^{2}+4}}{2}$.

6. Calculus Potpourri:

(a) Find the average value of $f(x)=x e^{3 x}$ over the interval [0,3]. Give the exact answer (no decimals).

Answer: $\frac{8}{27} e^{9}+\frac{1}{27}$. The average value of $f(x)$ over $[a, b]$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$, so we need to calculate $\frac{1}{3} \int x e^{3 x} d x$.
The integral is computed using integration by parts taking $u=x$ and $d v=e^{3 x} d x$. Then
we have $d u=1 d x$ and $v=\frac{1}{3} e^{3 x}$. Applying the integration by parts formula, we find

$$
\begin{aligned}
\frac{1}{3} \int x e^{3 x} d x & =\frac{1}{3}\left(\left.\frac{1}{3} x e^{3 x}\right|_{0} ^{3}-\int_{0}^{3} \frac{1}{3} e^{3 x} d x\right) \\
& =\frac{1}{3}\left(e^{9}-0-\left.\frac{1}{9} e^{3 x}\right|_{0} ^{3}\right) \\
& =\frac{1}{3}\left(e^{9}-\frac{1}{9} e^{9}+\frac{1}{9}\right) \\
& =\frac{8}{27} e^{9}+\frac{1}{27}
\end{aligned}
$$

(b) The population of Owenville has a radial density function of $\rho(r)=20\left(3+r^{2}\right)^{-2}$, where r is the distance (in miles) from the city center and ρ is measured in thousands of people per square mile. Calculate the number of people living within 10 miles of the center of Owenville (round to the nearest whole number).

Answer: 20,334 people live within 10 miles of the center of Owenville.
The population is found by integrating the density function times $2 \pi r$ over the interval $[0,10]$. We have

$$
\begin{aligned}
\int_{0}^{10} 2 \pi r \cdot 20\left(3+r^{2}\right)^{-2} d r & =20 \pi \int_{0}^{10} 2 r\left(3+r^{2}\right)^{-2} d r \\
& =20 \pi \cdot-\left.\left(3+r^{2}\right)^{-1}\right|_{0} ^{10} \quad\left(u \text {-sub with } u=3+r^{2}\right) \\
& =20 \pi\left(\frac{-1}{103}+\frac{1}{3}\right) \\
& =\frac{2000 \pi}{309} \\
& \approx 20.334 \text { thousand people. }
\end{aligned}
$$

