MATH 134 Calculus 2 with FUNdamentals

Practice Exam \#1

1. Let $g(x)=\ln x$ over the interval $1 \leq x \leq 3$.
(a) Approximate the area (to three decimal places) under the graph of $g(x)=\ln x$ from $1 \leq x \leq 3$ by using four equal subintervals and right endpoints (i.e., calculate the right-hand sum R_{4}).
(b) Sketch a graph of $g(x)$ over $[1,3]$ and draw the four rectangles used to compute R_{4}. Based on your figure, is your estimate in part (a) an underestimate, an overestimate, or can this not be determined?
(c) Approximate the area (to three decimal places) under the graph of $g(x)=\ln x$ from $1 \leq x \leq 3$ by using four equal subintervals and midpoints (i.e., calculate the midpoint $\left.\operatorname{sum} M_{4}\right)$.
2. Define $A(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 6$, where the graph of $f(t)$ is shown below.

(a) Find $A(0)$ and $A(3)$.
(b) Find $A^{\prime}(2), A^{\prime}(3), A^{\prime \prime}(2)$, and $A^{\prime \prime}(3)$, if they exist.
(c) On what interval(s) is $A(x)$ increasing?
(d) On what interval(s) is $A(x)$ concave up?
3. Evaluate each of the following integrals, giving the exact answer (no decimals) for parts (e) and (f).
(a) $\int 10 x^{4}+\sqrt{x}-\pi d x$
(b) $\int 3^{x}+\sin (4 x)-\frac{2}{x} d x$
(c) $\int \frac{t^{3}+t}{\sqrt{t^{4}+2 t^{2}+7}} d t$
(d) $\int \frac{x^{2}}{x^{6}+1} d x \quad$ Hint: Let $u=x^{3}$.
(e) $\int_{-\pi / 4}^{\pi / 4} \cos (2 \theta) e^{\sin (2 \theta)} d \theta$
(f) $\int_{0}^{1} \frac{\left(\tan ^{-1} x\right)^{3}}{1+x^{2}} d x$
4. Suppose that the acceleration of a particle traveling along a line is given by

$$
a(t)=e^{3 t}-4 t
$$

If the initial velocity is $v(0)=4$ and the initial position is $s(0)=1$, find the position function $s(t)$.
5. Evaluate $\int_{0}^{5 / 4} \frac{1}{\sqrt{25-4 x^{2}}} d x$ using the substitution $u=\frac{2}{5} x$. Give the exact answer (no decimals).

6. Calculus Potpourri:

(a) Suppose that $\int_{-3}^{0} f(x) d x=5$ and $\int_{0}^{6} f(x) d x=3$, and that $f(x)$ is an odd continuous function. Find the value of $\int_{3}^{6} 4 f(x) d x$.
(b) Find the value of $\int_{-3}^{3} 4 \sqrt{9-x^{2}} d x$ by interpreting the definite integral in terms of area.
(c) A particle travels in a straight line with velocity $v(t)=3 t-3 \mathrm{~m} / \mathrm{s}$. Find the total distance traveled by the particle over the time interval $[0,4]$.
(d) Find and simplify $\frac{d}{d x}\left(\int_{\sqrt{x}}^{2020} \tan \left(t^{2}+1\right) d t\right)$.

