MATH 134 Calculus 2 with FUNdamentals

Practice Exam \#1 SOLUTIONS

1. Let $g(x)=\ln x$ over the interval $1 \leq x \leq 3$.
(a) Approximate the area (to three decimal places) under the graph of $g(x)=\ln x$ from $1 \leq x \leq 3$ by using four equal subintervals and right endpoints (i.e., calculate the right-hand sum R_{4}).
Answer: The width of each rectangle is $\Delta x=(3-1) / 4=1 / 2$. Evaluating g at the right endpoints of each subinterval gives an estimated area of

$$
R_{4}=\frac{1}{2}(g(1.5)+g(2)+g(2.5)+g(3))=\frac{1}{2}(\ln 1.5+\ln 2+\ln 2.5+\ln 3) \approx 1.557
$$

(b) Sketch a graph of $g(x)$ over $[1,3]$ and draw the four rectangles used to compute R_{4}. Based on your figure, is your estimate in part (a) an underestimate, an overestimate, or can this not be determined?
Answer: The value in part (a) is an overestimate because g is an increasing function (see the figure below).

(c) Approximate the area (to three decimal places) under the graph of $g(x)=\ln x$ from $1 \leq x \leq 3$ by using four equal subintervals and midpoints (i.e., calculate the midpoint $\left.\operatorname{sum} M_{4}\right)$.
Answer: The width of each rectangle is still $1 / 2$. Evaluating g at the midpoints of each subinterval gives an estimated area of

$$
\begin{aligned}
M_{4} & =\frac{1}{2}(g(1.25)+g(1.75)+g(2.25)+g(2.75)) \\
& =\frac{1}{2}(\ln 1.25+\ln 1.75+\ln 2.25+\ln 2.75) \\
& \approx 1.303
\end{aligned}
$$

2. Define $A(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 6$, where the graph of $f(t)$ is shown below.

(a) Find $A(0)$ and $A(3)$.

Answer: Find the area under the curve. $A(0)=0$ and $A(3)=2 \cdot 2+\frac{1}{2} \cdot 1 \cdot 2=5$ (a rectangle plus a triangle).
(b) Find $A^{\prime}(2), A^{\prime}(3), A^{\prime \prime}(2)$, and $A^{\prime \prime}(3)$, if they exist.

Answer: Using FTC, part 2, we have that $A^{\prime}(x)=f(x)$ and thus $A^{\prime}(2)=f(2)=2$ and $A^{\prime}(3)=f(3)=0$, as can be seen from the graph (find the height).
Next, $A^{\prime}(x)=f(x)$ implies that $A^{\prime \prime}(x)=f^{\prime}(x)$ (differentiate both sides with respect to x). This means that $A^{\prime \prime}(2)=f^{\prime}(2)$ does not exist because there is a corner at $t=2$ and $A^{\prime \prime}(3)=f^{\prime}(3)=-2$ (slope of the line at $t=3$.)
(c) On what interval(s) is $A(x)$ increasing?

Answer: Since $A^{\prime}(x)=f(x)$ and since a function is increasing whenever its derivative is positive, we see that A is increasing whenever $f>0$, or when $0<x<3$.
(d) On what interval(s) is $A(x)$ concave up?

Answer: Since $A^{\prime \prime}(x)=f^{\prime}(x)$ and since a function is concave up whenever its second derivative is positive, we see that A is concave up whenever $f^{\prime}>0$ (so f is increasing), or when $4<x<6$.
3. Evaluate each of the following integrals, giving the exact answer (no decimals) for parts (e) and (f).
(a) $\int 10 x^{4}+\sqrt{x}-\pi d x$

Computing each antiderivative separately, we obtain

$$
10 \cdot \frac{1}{5} x^{5}+\frac{2}{3} x^{3 / 2}-\pi x+c=2 x^{5}+\frac{2}{3} x^{3 / 2}-\pi x+c
$$

using the power rule.
(b) $\int 3^{x}+\sin (4 x)-\frac{2}{x} d x$

Answer: Computing each antiderivative separately, we obtain

$$
\frac{3^{x}}{\ln 3}-\frac{1}{4} \cos (4 x)-2 \ln |x|+c,
$$

using the appropriate formulas.
(c) $\int \frac{t^{3}+t}{\sqrt{t^{4}+2 t^{2}+7}} d t$

Answer: This is a u-substitution with $u=t^{4}+2 t^{2}+7$. Then $d u=4 t^{3}+4 t d t=4\left(t^{3}+t\right) d t$. Multiplying the integral by 4 on the inside and $1 / 4$ on the outside, the integral transforms to

$$
\frac{1}{4} \int \frac{1}{\sqrt{u}} d u=\frac{1}{4} \int u^{-1 / 2} d u=\frac{1}{4} \cdot 2 u^{1 / 2}+c=\frac{1}{2} u^{1 / 2}+c .
$$

Converting back into the original variable gives

$$
\frac{1}{2} \sqrt{t^{4}+2 t^{2}+7}+c
$$

(d) $\int \frac{x^{2}}{x^{6}+1} d x \quad$ Hint: Let $u=x^{3}$.

Answer: Letting $u=x^{3}$, we have $d u=3 x^{2} d x$ and $x^{6}=u^{2}$. Multiplying the integral by 3 on the inside and $1 / 3$ on the outside, the integral transforms to

$$
\frac{1}{3} \int \frac{1}{u^{2}+1} d u=\frac{1}{3} \tan ^{-1}(u)+c .
$$

Converting back into the original variable gives $\frac{1}{3} \tan ^{-1}\left(x^{3}\right)+c$.
(e) $\int_{-\pi / 4}^{\pi / 4} \cos (2 \theta) e^{\sin (2 \theta)} d \theta$

Answer: This is a u-substitution with $u=\sin (2 \theta)$. Then $d u=2 \cos (2 \theta) d \theta$. Also, if $\theta=-\pi / 4$, then $u=\sin (-\pi / 2)=-1$ and if $\theta=\pi / 4$, then $u=\sin (\pi / 2)=1$. Multiplying the integral by 2 on the inside and $1 / 2$ on the outside, the integral transforms to

$$
\frac{1}{2} \int_{-1}^{1} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{-1} ^{1}=\frac{1}{2}\left(e-e^{-1}\right)=\frac{1}{2}\left(e-\frac{1}{e}\right) .
$$

(f) $\int_{0}^{1} \frac{\left(\tan ^{-1} x\right)^{3}}{1+x^{2}} d x$

Answer: This is a u-substitution with $u=\tan ^{-1} x$. Then $d u=1 /\left(1+x^{2}\right) d x$. Also, if $x=0$, then $u=\tan ^{-1}(0)=0$ and if $x=1$, then $u=\tan ^{-1}(1)=\pi / 4$. Therefore, the integral transforms to

$$
\int_{0}^{\pi / 4} u^{3} d u=\left.\frac{1}{4} u^{4}\right|_{0} ^{\pi / 4}=\frac{1}{4}\left(\frac{\pi^{4}}{4^{4}}-0\right)=\frac{\pi^{4}}{1024}
$$

4. Suppose that the acceleration of a particle traveling along a line is given by

$$
a(t)=e^{3 t}-4 t
$$

If the initial velocity is $v(0)=4$ and the initial position is $s(0)=1$, find the position function $s(t)$.

Answer:

To find $v(t)$ we compute the antiderivative of the acceleration. Recall that

$$
\int e^{k t} d t=\frac{1}{k} e^{k t}+c
$$

which is true for any constant k (check it with the chain rule.) Thus, we have that

$$
v(t)=\frac{1}{3} e^{3 t}-2 t^{2}+c
$$

Since $v(0)=4$, we find that $4=1 / 3-0+c$, which implies that $c=11 / 3$. Thus,

$$
v(t)=\frac{1}{3} e^{3 t}-2 t^{2}+11 / 3
$$

Next, we compute another antiderivative to find the position function $s(t)$. This gives

$$
s(t)=\frac{1}{9} e^{3 t}-\frac{2}{3} t^{3}+\frac{11}{3} t+c
$$

Finally, using the initial position $s(0)=1$, we have that $1=1 / 9-0+0+c$, which implies that $c=8 / 9$. The final answer is

$$
s(t)=\frac{1}{9} e^{3 t}-\frac{2}{3} t^{3}+\frac{11}{3} t+\frac{8}{9}
$$

5. Evaluate $\int_{0}^{5 / 4} \frac{1}{\sqrt{25-4 x^{2}}} d x$ using the substitution $u=\frac{2}{5} x$. Give the exact answer (no decimals).

Answer: Letting $u=\frac{2}{5} x$, we have $x=\frac{5}{2} u$ and $d x=\frac{5}{2} d u$. Then,

$$
\begin{aligned}
& \sqrt{25-4 x^{2}}=\sqrt{25-4\left(\frac{5}{2} u\right)^{2}}=\sqrt{25-4 \cdot \frac{25}{4} u^{2}} \\
& =\sqrt{25-25 u^{2}}=\sqrt{25\left(1-u^{2}\right)}=5 \sqrt{1-u^{2}}
\end{aligned}
$$

Also, if $x=0$, then $u=0$, and if $x=5 / 4$, then $u=\frac{2}{5} \cdot \frac{5}{4}=1 / 2$.
Applying the above calculations, the integral transforms to

$$
\begin{aligned}
& \int_{0}^{1 / 2} \frac{1}{5} \cdot \frac{1}{\sqrt{1-u^{2}}} \cdot \frac{5}{2} d u=\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-u^{2}}} d u \\
= & \left.\frac{1}{2} \sin ^{-1} u\right|_{0} ^{1 / 2}=\frac{1}{2}\left(\sin ^{-1}(1 / 2)-\sin ^{-1}(0)\right)=\frac{\pi}{12},
\end{aligned}
$$

since $\sin ^{-1}(1 / 2)=\pi / 6$ and $\sin ^{-1}(0)=0$.

6. Calculus Potpourri:

(a) Suppose that $\int_{-3}^{0} f(x) d x=5$ and $\int_{0}^{6} f(x) d x=3$, and that $f(x)$ is an odd continuous function. Find the value of $\int_{3}^{6} 4 f(x) d x$.

Answer: Since f is an odd function, it is symmetric with respect to the origin. This means the integral of f over an interval on one side of the y-axis is equivalent to minus the integral of f over the reflection of that interval onto the other side of the axis. Thus, we have $\int_{0}^{3} f(x) d x=-5$ because $\int_{-3}^{0} f(x) d x=5$. Using linearity, we have

$$
\int_{0}^{6} f(x) d x=\int_{0}^{3} f(x) d x+\int_{3}^{6} f(x) d x
$$

which gives

$$
3=-5+\int_{3}^{6} f(x) d x \quad \text { or } \quad \int_{3}^{6} f(x) d x=8
$$

Then, since constants pull out of integrals, we have

$$
\int_{3}^{6} 4 f(x) d x=4 \cdot 8=32
$$

(b) Find the value of $\int_{-3}^{3} 4 \sqrt{9-x^{2}} d x$ by interpreting the definite integral in terms of area. Answer: First note that if $y=\sqrt{9-x^{2}}$, then $y^{2}=9-x^{2}$ or $x^{2}+y^{2}=9$. This is the equation of a circle centered at the origin of radius 3. It follows that the integral is equal to 4 times the area of a semi-circle of radius 3 . We have

$$
\int_{-3}^{3} 4 \sqrt{9-x^{2}} d x=4 \cdot \frac{1}{2} \pi(3)^{2}=18 \pi
$$

(c) A particle travels in a straight line with velocity $v(t)=3 t-3 \mathrm{~m} / \mathrm{s}$. Find the total distance traveled by the particle over the time interval $[0,4]$.
Answer: To find the total distance traveled, we compute $\int_{0}^{4}|v(t)| d t=\int_{0}^{4}|3 t-3| d t$. In order to evaluate this integral, we need to determine where $v(t)$ is positive and where it is negative. But $v(t)$ is just a line with slope 3 and t-intercept at $t=1$ (solve $3 t-3=0$). It is negative for $0 \leq t<1$ and positive for $1<t \leq 4$. Therefore,

$$
\begin{aligned}
\int_{0}^{4}|3 t-3| d t & =\int_{0}^{1} 3-3 t d t+\int_{1}^{4} 3 t-3 d t \\
& =3 t-\left.\frac{3}{2} t^{2}\right|_{0} ^{1}+\frac{3}{2} t^{2}-\left.3 t\right|_{1} ^{4} \\
& =\left(3-\frac{3}{2}\right)-0+24-12-\left(\frac{3}{2}-3\right) \\
& =\frac{3}{2}+12+\frac{3}{2} \\
& =15 \mathrm{~m}
\end{aligned}
$$

Note that we can also evaluate the integral by interpreting it as the area under the graph of $|v(t)|$. This gives two triangles of area $3 / 2$ and $27 / 2$ for a total of $30 / 2=15$.
(d) Find and simplify $\frac{d}{d x}\left(\int_{\sqrt{x}}^{2020} \tan \left(t^{2}+1\right) d t\right)$.

Answer: This is a problem using FTC, part 2. First flip the limits of integration and then apply FTC, part 2 as well as the chain rule. The solution is

$$
\begin{aligned}
\frac{d}{d x}\left(\int_{\sqrt{x}}^{2020} \tan \left(t^{2}+1\right) d t\right) & =-\frac{d}{d x}\left(\int_{2020}^{\sqrt{x}} \tan \left(t^{2}+1\right) d t\right) \\
& =-\tan \left((\sqrt{x})^{2}+1\right) \cdot \frac{d}{d x}(\sqrt{x}) \\
& =-\tan (x+1) \cdot \frac{1}{2} x^{-1 / 2} \\
& =-\frac{\tan (x+1)}{2 \sqrt{x}} .
\end{aligned}
$$

