MATH 133 Calculus 1 with FUNdamentals Practice Exam 2

1. The graph of $f(x)$ is shown below. Use it to answer the following questions.

(a) State the precise mathematical definition for a function $f(x)$ to be continuous at the point $x=a$.
(b) Using your definition from part (a), give a mathematical explanation as to why f is not continuous at $x=-2$.
(c) Is f left-continuous, right-continuous, or neither at $x=-2$? Explain.
(d) Evaluate each of the following:
(i) $\lim _{x \rightarrow 3} f(x)$
(ii) $f(3)$
(e) How should $f(3)$ be redefined to remove the discontinuity at $x=3$?
2. Evaluate each of the following limits, if they exist. Note that ∞ or $-\infty$ are acceptable answers. You must show work (e.g., algebra) to receive full credit.
(a) $\lim _{x \rightarrow \pi} \sqrt{2 \cos x+5}$
(b) $\lim _{x \rightarrow 4} \frac{2 x^{2}-7 x-4}{x^{2}-16}$
(c) $\lim _{\theta \rightarrow 0} \frac{\cos (3 \theta) \cdot \sin \theta}{\theta}$
(d) $\lim _{x \rightarrow 2}\left(\frac{1}{2(x-2)}-\frac{2}{x^{2}-4}\right)$
(e) $\lim _{x \rightarrow \infty} \tan ^{-1}\left(\frac{1+x^{4}}{3 x^{3}-4 x^{2}+5}\right)$
3. Use the Intermediate Value Theorem to prove that the equation $e^{x}=\cos (2 x)+1$ has a solution in the interval $[0, \pi / 4]$.
4. (a) State the two limit definitions for the derivative of a function $f(x)$ at the point $x=a$.

$$
f^{\prime}(a)=
$$

or

$$
f^{\prime}(a)=
$$

(b) Using one of your limit definitions from part (a), find $f^{\prime}(2)$ if $f(x)=\sqrt{5 x-1}$.
5. The graph of $f(x)$ is shown below. Determine (estimate if necessary) the following values of the derivative:

(a) $f^{\prime}(-2)$
(b) $f^{\prime}(0)$
(c) $f^{\prime}(1 / 2)$
(d) $f^{\prime}(2)$
(e) $f^{\prime}(3)$
(f) Sketch a graph of $f^{\prime}(x)$.
6. Calculus Potpourri: You must show your work to receive any partial credit.
(a) If $F(x)=x^{2} \cos x$, find and simplify $F^{\prime \prime}(x)$.
(b) If $6 x-8 \leq g(x) \leq 3 x^{2}-5$ for all x, find $\lim _{x \rightarrow 1} g(x)$.
(c) Find any horizontal asymptotes for the function $y(t)=\frac{8 t-5 t^{3}+9 t^{7}}{\pi+4 t^{5}-3 t^{7}}$.
(d) Find and simplify $F^{\prime}(x)$ if $F(x)=5 e^{x}-\frac{3}{x^{5}}+\pi^{3}$.
(e) Find the equation of the tangent line (in slope-intercept form) to $f(x)=6 \sqrt{x}-\frac{1}{4} x^{2}$ at the point $a=4$.
(f) Sketch a graph of a function $g(x)$ that satisfies $g^{\prime}(x)>0, g^{\prime \prime}(x)<0$ and $\lim _{x \rightarrow \infty} g(x)=4$.

