MATH 133-02 Calculus I with FUNdamentals

Exam \#2 Solutions October 31, 2013 Prof. G. Roberts

1. The graph of $f(x)$ is shown below. Use it to answer each of the following questions. Note that ∞ or $-\infty$ are acceptable answers for the limit problems. (17 pts .)

(a) Evaluate $\lim _{x \rightarrow 6^{+}} f(x)$

Answer: ∞
(b) Evaluate $\lim _{x \rightarrow 6^{-}} f(x)$

Answer: $-\infty$
(c) Evaluate $\lim _{x \rightarrow \infty} f(x)$

Answer: 1
(d) Evaluate $\lim _{x \rightarrow 0} 3[f(x)]^{2}$

Answer: 12. Since $\lim _{x \rightarrow 0} f(x)=-2$, we have, by the limit laws,

$$
\lim _{x \rightarrow 0} 3[f(x)]^{2}=3\left(\lim _{x \rightarrow 0} f(x)\right)^{2}=3(-2)^{2}=12
$$

(e) List all the x-values where f is not continuous.

Answer: $x=-4$ (limit does not exist) and $x=6$ (no function value)
(f) List all the x-values where f is not differentiable.

Answer: $x=2$ (cusp) and $x=-4,6$ (if f is not continuous at a point, then it cannot be differentiable there either)
2. Evaluate each of the following limits, if they exist. Note that ∞ or $-\infty$ are acceptable answers. Be sure to show your work. (5 pts. each)
(a) $\lim _{x \rightarrow \pi} \sqrt{2 \cos ^{2}(x)+3}$

Answer: $\sqrt{5}$. Using the fact that the function is continuous at $x=\pi$, we simply plug in $x=\pi$ to obtain $\sqrt{2 \cos ^{2}(\pi)+3}=\sqrt{2(-1)^{2}+3}=\sqrt{5}$.
(b) $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x^{2}-25}$

Answer: 7/10. Factor, simplify and then take the limit. After factoring, the limit becomes

$$
\lim _{x \rightarrow 5} \frac{(x-5)(x+2)}{(x-5)(x+5)}=\lim _{x \rightarrow 5} \frac{x+2}{x+5}=\frac{7}{10}
$$

(c) $\lim _{x \rightarrow-\infty} \frac{\pi-2 x^{2}+15 x^{4}}{1+7 x-3 x^{4}}$

Answer: - 5. Since the highest powers in the numerator and denominator are equal, we simply take the ratio of their coefficients, $15 /(-3)=-5$. The argument is made more rigorous by dividing top and bottom by the highest power x^{4}, and then using the limit laws to arrive at -5 .
(d) $\lim _{x \rightarrow 4} \ln (|x-4|)$

Answer: $-\infty$. One of the hardest problems on the exam. One approach is to draw the graph of the function. First, if $x>4$, then $|x-4|=x-4$, so we want to sketch $\ln (x-4)$ over the domain $x>4$. This is the graph of $\ln x$ shifted right by 4 units. Then, for $x<4$, we have $|x-4|=-(x-4)$, so we want to sketch the graph of $\ln (-(x-4))$ over the domain $x<4$. This is the graph of $\ln x$ reflected about the y-axis (replace x by $-x$) and then shifted right by 4 units (replace x by $x-4)$. The graph of $\ln (|x-4|)$ is shown below, from which it is clear that the limit is $-\infty$. Since $\ln (x)$ has a vertical asymptote at $x=0, \ln (|x-4|)$ has a vertical asymptote at $x=4$.

3. (a) State a limit definition for the derivative of a function $f(x)$ at the point $x=a$. (3 pts.)

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

(b) Use your limit definition from part (a) to find $f^{\prime}(2)$ where $f(x)=\frac{3}{x^{2}}$. (9 pts.)

Answer: $f^{\prime}(2)=-3 / 4$.
Method 1: Using the $\lim _{h \rightarrow 0}$ definition, we have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3}{(2+h)^{2}}-\frac{3}{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{12-3(2+h)^{2}}{4(2+h)^{2}}}{\frac{h}{1}} \\
& =\lim _{h \rightarrow 0} \frac{12-3\left(4+4 h+h^{2}\right)}{4 h(2+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-12 h-3 h^{2}}{4 h(2+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-3 h(4+h)}{4 h(2+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-3(4+h)}{4(2+h)^{2}} \\
& =\frac{-3 \cdot 4}{4(2)^{2}}=\frac{-12}{16}=-\frac{3}{4} .
\end{aligned}
$$

Method 2: Using the $\lim _{x \rightarrow a}$ definition, we have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\frac{3}{x^{2}}-\frac{3}{4}}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\frac{12-3 x^{2}}{4 x^{2}}}{\frac{x-2}{1}} \\
& =\lim _{x \rightarrow 2} \frac{12-3 x^{2}}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{3\left(4-x^{2}\right)}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{3(2-x)(2+x)}{4 x^{2}(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-3(2+x)}{4 x^{2}} \\
& =\frac{-3 \cdot 4}{4(2)^{2}}=\frac{-12}{16}=-\frac{3}{4} .
\end{aligned}
$$

(c) Find the equation of the tangent line to $f(x)=\frac{3}{x^{2}}$ at the point $x=2$. (5 pts.)

Answer: $y=-\frac{3}{4} x+\frac{9}{4}$. From part (b), we have that $m=f^{\prime}(2)=-3 / 4$. Thus, $y=-\frac{3}{4} x+b$. To find b, we use the point $(2,3 / 4)$ since $x=2$ implies $y=f(2)=3 / 4$. Therefore, we have $3 / 4=-\frac{3}{4} \cdot 2+b$ or $3 / 4=-3 / 2+b$, which implies $b=9 / 4$. Thus the equation of the tangent line is $y=-\frac{3}{4} x+\frac{9}{4}$.
4. Given the graph of the function $g(x)$ below, sketch the graph of the derivative $g^{\prime}(x)$ on the axes provided. (12 pts.)

Answer:
Note that the graph of the derivative will have a hole at $x=-1$ as $g^{\prime}(-1)$ does not exist (corner).

5. Sketch the graph of a function $f(x)$ satisfying all of the following properties: (12 pts.)

- f is continuous at all x except for $x=4$
- f has a vertical asymptote at $x=4$
- $f(0)=0$
- $f^{\prime}(-3)=0$ and $f^{\prime}(2)=0$
- $\lim _{x \rightarrow \infty} f(x)=2$
- $f^{\prime}(x)<0$ if $x<-3$ or $2<x<4$
- $f^{\prime}(x)>0$ if $-3<x<2$ or $x>4$
- $f^{\prime \prime}(x)<0$ if $x<-6$ or $0<x<4$ or $x>4$
- $f^{\prime \prime}(x)>0$ if $-6<x<0$

Answer:

6. Some final conceptual questions. You must show your work to receive any partial credit. (22 pts.)
(a) If $6 x-4 \leq h(x) \leq x^{2}+5$ for all x, find $\lim _{x \rightarrow 3} h(x)$.

Answer: Using the Squeeze Theorem, since $\lim _{x \rightarrow 3} 6 x-4=14$ and $\lim _{x \rightarrow 3} x^{2}+5=14$, we have that $\lim _{x \rightarrow 3} h(x)=14$.
(b) Suppose that $P(s)$ represents the profit earned in dollars for selling s stereos. Which of the following best describes the meaning of $P^{\prime}(500)=100$?
(i) The profit earned from selling 100 stereos is $\$ 500$.
(ii) The profit earned from selling 500 stereos is $\$ 100$.
(iii) Selling the 501st stereo will earn, approximately, an additional $\$ 100$ in profit.
(iv) Selling the 101st stereo will earn, approximately, an additional $\$ 500$ in profit.
(v) The rate of change of the profit is $\$ 500$ per stereo after selling 100 stereos.

Answer: (iii)
(c) When trying to assuage the fears of the American people concerning inflation, former U.S. President Nixon once stated, "Although the rate of inflation is increasing, it is increasing at a decreasing rate." Interpret this statement by determining the signs (positive, negative or zero) of $r^{\prime}(t)$ and $r^{\prime \prime}(t)$, where $r(t)$ represents the rate of inflation at time t.

Answer: The first derivative $r^{\prime}(t)$ is positive because the rate of inflation is increasing. However, since it is increasing at a decreasing rate (concave down), the second derivative $r^{\prime \prime}(t)$ is negative. As a point of interest, since $r(t)$ is really a "rate," it is actually a derivative in its own right. Thus, Nixon was actually speaking to the public about the third derivative!
(d) Find and simplify $h^{\prime}(x)$ if $h(x)=\frac{6}{\sqrt[3]{x^{2}}}+7 x^{5}-5 e^{\pi}$.

Answer: The simplest approach is to convert the fraction into a power and apply the power rule. Since $\sqrt[3]{x^{2}}=x^{2 / 3}$, we have $h(x)=6 x^{-2 / 3}+7 x^{5}-5 e^{\pi}$. Using the power rule, we find that

$$
h^{\prime}(x)=-4 x^{-5 / 3}+35 x^{4} .
$$

Note that since both e and π are constants, the derivative of $5 e^{\pi}$ is zero.
(e) Suppose that $Q(x)=\frac{e^{x}}{g(x)}$ and that $g(1)=3, g^{\prime}(1)=-5$. Find $Q^{\prime}(1)$ (give the exact answer, no decimals).

Answer: $8 e / 9$. By the quotient rule, we have

$$
Q^{\prime}(x)=\frac{g(x) \cdot e^{x}-e^{x} \cdot g^{\prime}(x)}{(g(x))^{2}} .
$$

Now plug in $x=1$ and simplify. This yields

$$
\begin{aligned}
Q^{\prime}(1) & =\frac{g(1) \cdot e^{1}-e^{1} \cdot g^{\prime}(1)}{(g(1))^{2}} \\
& =\frac{3 e-e(-5)}{9}=\frac{8 e}{9} .
\end{aligned}
$$

