Mathematics and Music: Change Ringing

Rules to ring an extent on n bells:

- 1. The first and last changes (rows) are rounds $(1 \ 2 \ 3 \ 4 \ \cdots n)$.
- 2. Other than rounds, all of the other n! changes occur exactly once.
- 3. Between successive changes, no bell moves more than one position.
- 4. No bell rests for more than 2 (sometimes relaxed further to 4) positions.
- 5. Each working bell should do the same amount of "work."
- 6. Horizontal symmetry should be present in the extent to help the ringers learn the path of their respective bell.

Note that Rules 1 - 3 are mandatory for an extent while Rules 4 - 6 are optional though often satisfied.

n	n!	Approximate Duration	Name
3	6	15 secs.	Singles
4	24	1 mins.	Minimus
5	120	5 mins.	Doubles
6	720	30 mins.	Minor
7	$5,\!040$	3 hrs.	Triples
8	$40,\!320$	24 hrs.	Ma jor
9	$362,\!880$	$9 \mathrm{days}$	Caters
10	$3,\!628,\!800$	3 months	Royal
11	$39,\!916,\!800$	3 years	Cinques
12	479,001,600	36 years	Maximus

Table 1: Approximate duration to ring an extent on n bells and the names given to such an extent. For example, *Plain Bob Minimus* is a composition written for 4 bells while *Grandshire Triples* is an extent on 7 bells. The two extents on 3 bells:

1 2 3	1 2 3
2 1 3	$1 \ 3 \ 2$
23 1	3 1 2
321	3 2 1
3 1 2	23 1
1 3 2	2 1 3
1 2 3	1 2 3

Note the simple zig-zag pattern of Bell $\mathbf{1}$ in the first extent, sweeping easily from position 1 to position 3 and back again. We say that Bell $\mathbf{1}$ is *plain hunting*. It only needs to do this once to complete the extent. In this case, we say that the bell is "not working." Notice that in the second extent, Bell $\mathbf{1}$ follows a similar zig-zag path except that this begins on the second change.

Plain Bob Minimus: (read down first, then hop to next column)

1 2 3 4	$1 \ 3 \ 4 \ 2$	$1\ 4\ 2\ 3$
2 1 4 3	3 1 2 4	$4\ 1\ 3\ 2$
24 1 3	3 2 1 4	43 1 2
$4\ 2\ 3\ {f 1}$	$2 \ 3 \ 4 \ 1$	$3\ 4\ 2\ 1$
$4\ 3\ 2\ {f 1}$	$2\ 4\ 3\ {f 1}$	324 1
$3 \ 4 \ 1 \ 2$	4 2 1 3	$2 \ 3 \ 1 \ 4$
$3 \ 1 \ 4 \ 2$	4 1 2 3	2 1 3 4
$1 \ 3 \ 2 \ 4$	$1 \ 4 \ 3 \ 2$	1 2 4 3
		1 2 3 4

Note the similarities with the first extent on three bells above. Bell **1** goes plain hunting again, this time moving from position 1 to position 4 and back again, needing 3 cycles to complete the extent. The other three bells have the same paths, just starting at different places so that Rule 5 is satisfied. This is a bit like a round. There are lots of interesting patterns and mathematics lurking in this extent!

Canterbury Minimus: (read down first, then hop to next column)

1 2 3 4	$1 \ 3 \ 4 \ 2$	$1\ 4\ 2\ 3$
2 1 4 3	3 1 2 4	$4\ 1\ 3\ 2$
$2\ 4\ 1\ 3$	3 2 1 4	$4 \ 3 \ 1 \ 2$
$2\;4\;3\;1$	324 1	432 1
$4\ 2\ 3\ {f 1}$	$2 \ 3 \ 4 \ 1$	$3\ 4\ 2\ 1$
4 2 1 3	23 1 4	$3\ 4\ 1\ 2$
4 1 2 3	2 1 3 4	3 1 4 2
1 4 3 2	1 2 4 3	$\underline{1}\ \underline{3}\ \underline{2}\ \underline{4}$
		$1\ 2\ 3\ 4$

What are the similarities and differences with Plain Bob Minimus? Is this a legitimate extent? Which of the six rules does it satisfy?