MATH 136-04 AP Calculus
 Sample Final Exam
 Fall 2010
 Prof. G. Roberts

There are a total of 200 points on the exam.

1. [20 pts.] Find $d y / d x$ for each of the following functions. Simplify your answer as best as possible.
(a) $y=x^{2} \tan (\sin x)$
(b) $y=\frac{1}{\sqrt{x^{4}+10}}$
(c) $y=x^{3}+3^{x}$
(d) $y=x^{x^{2}}$
2. [25 pts.] The graph of a function $f(t)$ is shown below. This function has a horizontal asymptote at $y=3$. Define the function $F(x)=\int_{-4}^{x} f(t) d t$ for $x \geq-4$.

(a) Sketch the graph of the derivative $f^{\prime}(t)$ over the domain $-4 \leq t \leq 7$.
(b) Find $F(-2)$ and $F(0)$.
(c) Find $F^{\prime \prime}(0)$ if it exists. If it does not exist, explain why.
(d) Sketch a graph of $F(x)$ over $-4 \leq x \leq 7$.
(e) What type of function (constant, linear, quadratic, trig, exponential, etc.) does $F(x)$ resemble as $x \rightarrow \infty$?
3. $[25 \mathrm{pts}$.$] Suppose that f(x)=\frac{3 x}{x^{2}+4}$.
(a) Find the vertical and horizontal asymptotes of $f(x)$.
(b) Calculate and simplify $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(c) Locate and classify any critical points of f.
(d) Locate any inflection points.
(e) Sketch the graph of $f(x)$.
4. [20 pts.] Evaluate the following integrals. You must use a valid integration technique to receive credit.
(a) $\int x^{2} \cos x d x$
(b) $\int \frac{t+2}{t^{2}+4 t+8} d t$
(c) $\int \frac{x+13}{x^{2}-2 x-3} d x$
(d) $\int \frac{1}{x^{2} \sqrt{x^{2}+1}} d x \quad$ Hint: Use the trig. sub. $x=\tan \theta$.
5. [15 pts.] Determine whether the given infinite series converges or diverges using any of the tests discussed in class. You must provide a valid reason to receive full credit.
(a) $\sum_{n=1}^{\infty} \frac{\sin n}{n^{4}}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n}(n+1)}{n-1}$
6. [20 pts.] Consider the initial-value problem

$$
\frac{d y}{d x}=(2-y) x^{2}, \quad y(0)=1
$$

(a) Use Euler's method with a step-size of $\Delta x=0.25$ to estimate the value of $y(1)$. (Round to the fourth decimal place.)
(b) Solve the differential equation subject to the given initial condition.
(c) What is the actual value of $y(1)$? Compute the error of the Euler's method estimate in part (a).
7. [13 pts.] Recall Newton's Law of Cooling: The rate at which the temperature of an object cools is proportional to the difference in temperature between the object and its surrounding medium. A hot cup of coffee initially at $99^{\circ} \mathrm{C}$ is left in a room where the temperature is $20^{\circ} \mathrm{C}$. If the coffee cools to $90^{\circ} \mathrm{C}$ in 2 minutes, find the temperature of the coffee after 5 minutes. How long will it take for the coffee to reach a drinkable temperature of $60^{\circ} \mathrm{C}$? Assume that the temperature of the room is held constant at $20^{\circ} \mathrm{C}$.
8. [30 pts.] TRUE or FALSE: If true, provide a brief explanation. If false, give a counterexample to the statement.
(a) If $f(x)$ is a strictly decreasing function, then its inverse $f^{-1}(x)$ is also a strictly decreasing function.
(b) The following limit does not exist:

$$
\lim _{t \rightarrow 0} \frac{\cos \left(t^{2}\right)-1}{t^{4}}
$$

(c) If $\sum_{n=1}^{\infty} a_{n}$ diverges and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n} \cdot b_{n}$ diverges.
9. [32 pts.] Some conceptual questions:
(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\sqrt{x+1}$.
(b) Derive the formula for the volume of a sphere of radius r by rotating the top half of the circle $x^{2}+y^{2}=r^{2}$ about the x-axis.
(c) Find the sum of the series $\sum_{n=2}^{\infty} \frac{4}{n^{2}-1}$. Hint: $\underline{\text { Master and Commander }}$
(d) For what values of k is $y(x)=e^{k x}$ a solution to the second-order differential equation $y^{\prime \prime}-3 y^{\prime}-10 y=0$.

