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This is a list of terminology and topics covered in the eighth chapter of Calculus, D. Hughes-
Hallet, et. al. 3rd edition. Please consult the text for definitions, statements of properties, and
numerous examples and exercises. Terms in bold face are defined in the text. We covered sections
8.1, 8.2 and 8.3.

Areas and Volumes. (Section 8.1) In this section, we calculate volumes of solid objects using
definite integrals. We first approximate the volume by slicing up the region and construct a
Riemann sum which adds up the volumes of the individual slices. Then, we take the limit
as the number of slices approaches infinity (i.e. the thickness of each slice approaches zero).
This results in a definite integral which gives the exact volume.

More precisely, we must slice the object in a way that allows us to easily determine the volume
of a slice. If Az represents the thickness of a slice, we want the cross-sectional area A(z) of a
slice at position x to have a simple formula. This will be the case if the cross-section of our
slice is a geometric shape such as a circle, square, or triangle. In a Riemann sum, we have

Volume = Z A(z;) Az
1=0

and letting n — oc, we have

Volume = /b A(z) dz (1)

where z = a is the starting point of the first slice, and z = b is the ending point of the last
slice. If you like, you can think of this in terms of the following variable-free formula:
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Volumes of Solids of Revolution, and Arclength. (Section 8.2) For the first application in
this section, we compute volumes of solids of revolution, using definite integrals as we did
in Section 8.1. In this case, a region R in the zy-plane is revolved about an axis, giving a
solid whose slices will be one of the following:

e Discs: If the region R maintains contact with the axis of revolution throughout, then
the cross-section of each slice will be a solid disc whose radius will be given in terms of
one of the curves bounding R.

o Washers: If the region R does not touch the axis of revolution throughout, then the
cross-section of each slice will be a washer whose inner and outer radii will be given in
terms of the curves bounding R.

In either case, we may use Equation 2 above, once we determine the relevant pieces to put
into the integral. To achieve this, we do the following:

1. Sketch the region R, note the axis of revolution, and sketch in a “generating strip” (i.e.
a thin strip which will produce a slice when revolved about the axis of revolution).



2. Determine the variable of integration. If we are revolving about the z-axis, or a line
parallel to the z-axis, then the variable of integration will be z, in order for the cross-
sections to be discs or washers. On the other hand, if we are revolving about the y-axis,
or a line parallel to the y-axis, then the variable of integration will be y.

3. Find the bounds of integration, ¢ and b. These will be found from the boundary curves
of R. If they are lines, such as £ = @ and = = b, then we simply use these values as our
bounds. Otherwise, we may need to determine the intersection points of two boundary
curves, by setting them equal to each other and solving for the variable of integration.

4. Find the cross-sectional area of a slice. First determine whether slices are discs or
washers. Supposing the variable of integration is z, then the cross-sectional area of a
slice at point z will be one of the following:

o A(x) = m(r(z))?, if slices are discs. The radius r(z) is the height of the generating
strip, which will be given in terms of one of the boundary curves of R.

o A(z) = m(rous(x))? — m(rin(x))? if slices are washers. The outer radius 7y (z) is
determined by measuring the distance between the outer edge of the generating strip
and the axis of revolution. The inner radius r;,(z) is determined by measuring the
distance between the inner edge of the generating strip and the axis of revolution.
Both of these measurements will involve boundary curves of R in some way.

Proceed similarly to find cross-sectional area A(y) if the variable of integration is y
instead of x.

5. Set up the definite integral as in Equation 2, and evaluate, using one of our methods of
integration from Chapter 7. You may find it helpful to simplify the integrand first.

The second application in this section is to lengths of curves. Formulas are given for arc
length of a curve, and arc length of a parameterized curve. We did not cover this material.

Density, Mass, and Center of Mass. (Section 8.3) The first application in this section involves
finding a total quantity, given the density of that quantity per unit length, area, or volume.
The basic model for computing total quantity from density involves a Riemann sum, and then
a definite integral, similar to the volume problems in Section 8.1 and 8.2. First, we slice the
given region in such a way that the density is approximately constant on each slice, and then
adding up (density)-(amount of space in a slice). This gives a Riemann sum approximating
the total quantity. Second, taking the limit as the number of slices approaches infinity gives
the exact total quantity, represented by the following variable-free definite integral:
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Determining the way to slice the region is based on the density function as given. We need
density to be approximately constant throughout a slice. Some common examples of regions
and the way to slice them are given below:

e The region is a long thin object like a metal rod or a stretch of road, and density is given
as a function d(z) in numbers per unit length. In this case, we slice the region into small
subintervals, each of length Axz. For the amount of space in a slice, we use Az in the
Riemann sum, and this becomes dz in the definite integral.



e The region is a disc, and density is given as a function §(r) in mass per unit area, where r
is the radial distance from the center of the region. In this case, density is approximately
constant on thin concentric rings around the center of the region, so we slice the region
into such rings, each of width Ar. For the amount of space in a slice, we approximate the
area of the thin ring by stretching it out into a rectangle of length 277 (circumference)
and width Ar. The area of a slice therefore goes into the Riemann sum as 27rAr, and
in the definite integral it becomes 27r dr.

e The region is a rectangular box with specified dimensions ¢ x w X h, and density is given
as a function 6(z) in mass per unit volume, where z is the vertical distance from the
bottom of the box. In this case, density is approximately constant on slices parallel to
the bottom of the box, so we slice the region into rectangular slices, each of thickness
Az. The volume of a slice therefore goes into the Riemann sum as fwAz, and in the
definite integral it becomes fw dz.

The second application in this section involves finding the center of mass of either a system
of point masses located at various positions along an axis, or of an object with known density
function. The center of mass, 7, of a system of n discrete masses mi,mao,...,m, lying
along the x-axis at positions z1,z9,...,z, respectively is given by:
n
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Summing up (position)*(mass) and dividing by the total mass gives us a weighted average of
all the masses, hence telling us the “balancing point” of the system.

The center of mass, 7, of an object lying along the z-axis between z = a and = = b, with
mass density d(x), is given by:
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The center of mass, (7,7), of a region in the plane with constant mass density ¢, is given
by:
[ 26 Ay(z)dx [ydA,(y)dy
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where A, (z) represents the length of strips perpendicular to the z-axis and A, (y) represents
the length of strips perpendicular to the y-axis.

T = 7=



