
MATH 136-01Chapter 8 Topi
 Review SheetNovember 23, 2004This is a list of terminology and topi
s 
overed in the eighth 
hapter of Cal
ulus, D. Hughes-Hallet, et. al. 3rd edition. Please 
onsult the text for de�nitions, statements of properties, andnumerous examples and exer
ises. Terms in bold fa
e are de�ned in the text. We 
overed se
tions8.1, 8.2 and 8.3.Areas and Volumes. (Se
tion 8.1) In this se
tion, we 
al
ulate volumes of solid obje
ts usingde�nite integrals. We �rst approximate the volume by sli
ing up the region and 
onstru
t aRiemann sum whi
h adds up the volumes of the individual sli
es. Then, we take the limitas the number of sli
es approa
hes in�nity (i.e. the thi
kness of ea
h sli
e approa
hes zero).This results in a de�nite integral whi
h gives the exa
t volume.More pre
isely, we must sli
e the obje
t in a way that allows us to easily determine the volumeof a sli
e. If �x represents the thi
kness of a sli
e, we want the 
ross-se
tional area A(x) of asli
e at position x to have a simple formula. This will be the 
ase if the 
ross-se
tion of oursli
e is a geometri
 shape su
h as a 
ir
le, square, or triangle. In a Riemann sum, we haveVolume � nXi=0 A(xi)�xand letting n!1, we have Volume = Z ba A(x) dx (1)where x = a is the starting point of the �rst sli
e, and x = b is the ending point of the lastsli
e. If you like, you 
an think of this in terms of the following variable-free formula:Volume = Z end of sta
kstart of sta
k �
ross-se
tionalarea of sli
e � � thi
kness: (2)Volumes of Solids of Revolution, and Ar
length. (Se
tion 8.2) For the �rst appli
ation inthis se
tion, we 
ompute volumes of solids of revolution, using de�nite integrals as we didin Se
tion 8.1. In this 
ase, a region R in the xy-plane is revolved about an axis, giving asolid whose sli
es will be one of the following:� Dis
s: If the region R maintains 
onta
t with the axis of revolution throughout, thenthe 
ross-se
tion of ea
h sli
e will be a solid dis
 whose radius will be given in terms ofone of the 
urves bounding R.� Washers: If the region R does not tou
h the axis of revolution throughout, then the
ross-se
tion of ea
h sli
e will be a washer whose inner and outer radii will be given interms of the 
urves bounding R.In either 
ase, we may use Equation 2 above, on
e we determine the relevant pie
es to putinto the integral. To a
hieve this, we do the following:1. Sket
h the region R, note the axis of revolution, and sket
h in a \generating strip" (i.e.a thin strip whi
h will produ
e a sli
e when revolved about the axis of revolution).



2. Determine the variable of integration. If we are revolving about the x-axis, or a lineparallel to the x-axis, then the variable of integration will be x, in order for the 
ross-se
tions to be dis
s or washers. On the other hand, if we are revolving about the y-axis,or a line parallel to the y-axis, then the variable of integration will be y.3. Find the bounds of integration, a and b. These will be found from the boundary 
urvesof R. If they are lines, su
h as x = a and x = b, then we simply use these values as ourbounds. Otherwise, we may need to determine the interse
tion points of two boundary
urves, by setting them equal to ea
h other and solving for the variable of integration.4. Find the 
ross-se
tional area of a sli
e. First determine whether sli
es are dis
s orwashers. Supposing the variable of integration is x, then the 
ross-se
tional area of asli
e at point x will be one of the following:� A(x) = �(r(x))2, if sli
es are dis
s. The radius r(x) is the height of the generatingstrip, whi
h will be given in terms of one of the boundary 
urves of R.� A(x) = �(rout(x))2 � �(rin(x))2 if sli
es are washers. The outer radius rout(x) isdetermined by measuring the distan
e between the outer edge of the generating stripand the axis of revolution. The inner radius rin(x) is determined by measuring thedistan
e between the inner edge of the generating strip and the axis of revolution.Both of these measurements will involve boundary 
urves of R in some way.Pro
eed similarly to �nd 
ross-se
tional area A(y) if the variable of integration is yinstead of x.5. Set up the de�nite integral as in Equation 2, and evaluate, using one of our methods ofintegration from Chapter 7. You may �nd it helpful to simplify the integrand �rst.The se
ond appli
ation in this se
tion is to lengths of 
urves. Formulas are given for ar
length of a 
urve, and ar
 length of a parameterized 
urve. We did not 
over this material.Density, Mass, and Center of Mass. (Se
tion 8.3) The �rst appli
ation in this se
tion involves�nding a total quantity, given the density of that quantity per unit length, area, or volume.The basi
 model for 
omputing total quantity from density involves a Riemann sum, and thena de�nite integral, similar to the volume problems in Se
tion 8.1 and 8.2. First, we sli
e thegiven region in su
h a way that the density is approximately 
onstant on ea
h sli
e, and thenadding up (density)�(amount of spa
e in a sli
e). This gives a Riemann sum approximatingthe total quantity. Se
ond, taking the limit as the number of sli
es approa
hes in�nity givesthe exa
t total quantity, represented by the following variable-free de�nite integral:Total quantity = Z end of sli
esstart of sli
es �density ona sli
e � � �amount of spa
ein a sli
e � : (3)Determining the way to sli
e the region is based on the density fun
tion as given. We needdensity to be approximately 
onstant throughout a sli
e. Some 
ommon examples of regionsand the way to sli
e them are given below:� The region is a long thin obje
t like a metal rod or a stret
h of road, and density is givenas a fun
tion Æ(x) in numbers per unit length. In this 
ase, we sli
e the region into smallsubintervals, ea
h of length �x. For the amount of spa
e in a sli
e, we use �x in theRiemann sum, and this be
omes dx in the de�nite integral.



� The region is a dis
, and density is given as a fun
tion Æ(r) in mass per unit area, where ris the radial distan
e from the 
enter of the region. In this 
ase, density is approximately
onstant on thin 
on
entri
 rings around the 
enter of the region, so we sli
e the regioninto su
h rings, ea
h of width �r. For the amount of spa
e in a sli
e, we approximate thearea of the thin ring by stret
hing it out into a re
tangle of length 2�r (
ir
umferen
e)and width �r. The area of a sli
e therefore goes into the Riemann sum as 2�r�r, andin the de�nite integral it be
omes 2�r dr.� The region is a re
tangular box with spe
i�ed dimensions `�w�h, and density is givenas a fun
tion Æ(z) in mass per unit volume, where z is the verti
al distan
e from thebottom of the box. In this 
ase, density is approximately 
onstant on sli
es parallel tothe bottom of the box, so we sli
e the region into re
tangular sli
es, ea
h of thi
kness�z. The volume of a sli
e therefore goes into the Riemann sum as `w�z, and in thede�nite integral it be
omes `w dz.The se
ond appli
ation in this se
tion involves �nding the 
enter of mass of either a systemof point masses lo
ated at various positions along an axis, or of an obje
t with known densityfun
tion. The 
enter of mass, x, of a system of n dis
rete masses m1;m2; : : : ;mn lyingalong the x-axis at positions x1; x2; : : : ; xm respe
tively is given by:x = Pni=1 ximiPni=1 xi = x1m1 + x2m2 + � � �+ xnmnm1 +m2 + � � �+mnSumming up (position)*(mass) and dividing by the total mass gives us a weighted average ofall the masses, hen
e telling us the \balan
ing point" of the system.The 
enter of mass, x, of an obje
t lying along the x-axis between x = a and x = b, withmass density Æ(x), is given by: x = R ba x Æ(x) dxR ba Æ(x) dxThe 
enter of mass, (x; y), of a region in the plane with 
onstant mass density Æ, is givenby: x = R x Æ Ax(x) dxTotal Mass y = R y Æ Ay(y) dyTotal Masswhere Ax(x) represents the length of strips perpendi
ular to the x-axis and Ay(y) representsthe length of strips perpendi
ular to the y-axis.


