
MATH 136-01Chapter 8 Topi Review SheetNovember 23, 2004This is a list of terminology and topis overed in the eighth hapter of Calulus, D. Hughes-Hallet, et. al. 3rd edition. Please onsult the text for de�nitions, statements of properties, andnumerous examples and exerises. Terms in bold fae are de�ned in the text. We overed setions8.1, 8.2 and 8.3.Areas and Volumes. (Setion 8.1) In this setion, we alulate volumes of solid objets usingde�nite integrals. We �rst approximate the volume by sliing up the region and onstrut aRiemann sum whih adds up the volumes of the individual slies. Then, we take the limitas the number of slies approahes in�nity (i.e. the thikness of eah slie approahes zero).This results in a de�nite integral whih gives the exat volume.More preisely, we must slie the objet in a way that allows us to easily determine the volumeof a slie. If �x represents the thikness of a slie, we want the ross-setional area A(x) of aslie at position x to have a simple formula. This will be the ase if the ross-setion of ourslie is a geometri shape suh as a irle, square, or triangle. In a Riemann sum, we haveVolume � nXi=0 A(xi)�xand letting n!1, we have Volume = Z ba A(x) dx (1)where x = a is the starting point of the �rst slie, and x = b is the ending point of the lastslie. If you like, you an think of this in terms of the following variable-free formula:Volume = Z end of stakstart of stak �ross-setionalarea of slie � � thikness: (2)Volumes of Solids of Revolution, and Arlength. (Setion 8.2) For the �rst appliation inthis setion, we ompute volumes of solids of revolution, using de�nite integrals as we didin Setion 8.1. In this ase, a region R in the xy-plane is revolved about an axis, giving asolid whose slies will be one of the following:� Diss: If the region R maintains ontat with the axis of revolution throughout, thenthe ross-setion of eah slie will be a solid dis whose radius will be given in terms ofone of the urves bounding R.� Washers: If the region R does not touh the axis of revolution throughout, then theross-setion of eah slie will be a washer whose inner and outer radii will be given interms of the urves bounding R.In either ase, we may use Equation 2 above, one we determine the relevant piees to putinto the integral. To ahieve this, we do the following:1. Sketh the region R, note the axis of revolution, and sketh in a \generating strip" (i.e.a thin strip whih will produe a slie when revolved about the axis of revolution).



2. Determine the variable of integration. If we are revolving about the x-axis, or a lineparallel to the x-axis, then the variable of integration will be x, in order for the ross-setions to be diss or washers. On the other hand, if we are revolving about the y-axis,or a line parallel to the y-axis, then the variable of integration will be y.3. Find the bounds of integration, a and b. These will be found from the boundary urvesof R. If they are lines, suh as x = a and x = b, then we simply use these values as ourbounds. Otherwise, we may need to determine the intersetion points of two boundaryurves, by setting them equal to eah other and solving for the variable of integration.4. Find the ross-setional area of a slie. First determine whether slies are diss orwashers. Supposing the variable of integration is x, then the ross-setional area of aslie at point x will be one of the following:� A(x) = �(r(x))2, if slies are diss. The radius r(x) is the height of the generatingstrip, whih will be given in terms of one of the boundary urves of R.� A(x) = �(rout(x))2 � �(rin(x))2 if slies are washers. The outer radius rout(x) isdetermined by measuring the distane between the outer edge of the generating stripand the axis of revolution. The inner radius rin(x) is determined by measuring thedistane between the inner edge of the generating strip and the axis of revolution.Both of these measurements will involve boundary urves of R in some way.Proeed similarly to �nd ross-setional area A(y) if the variable of integration is yinstead of x.5. Set up the de�nite integral as in Equation 2, and evaluate, using one of our methods ofintegration from Chapter 7. You may �nd it helpful to simplify the integrand �rst.The seond appliation in this setion is to lengths of urves. Formulas are given for arlength of a urve, and ar length of a parameterized urve. We did not over this material.Density, Mass, and Center of Mass. (Setion 8.3) The �rst appliation in this setion involves�nding a total quantity, given the density of that quantity per unit length, area, or volume.The basi model for omputing total quantity from density involves a Riemann sum, and thena de�nite integral, similar to the volume problems in Setion 8.1 and 8.2. First, we slie thegiven region in suh a way that the density is approximately onstant on eah slie, and thenadding up (density)�(amount of spae in a slie). This gives a Riemann sum approximatingthe total quantity. Seond, taking the limit as the number of slies approahes in�nity givesthe exat total quantity, represented by the following variable-free de�nite integral:Total quantity = Z end of sliesstart of slies �density ona slie � � �amount of spaein a slie � : (3)Determining the way to slie the region is based on the density funtion as given. We needdensity to be approximately onstant throughout a slie. Some ommon examples of regionsand the way to slie them are given below:� The region is a long thin objet like a metal rod or a streth of road, and density is givenas a funtion Æ(x) in numbers per unit length. In this ase, we slie the region into smallsubintervals, eah of length �x. For the amount of spae in a slie, we use �x in theRiemann sum, and this beomes dx in the de�nite integral.



� The region is a dis, and density is given as a funtion Æ(r) in mass per unit area, where ris the radial distane from the enter of the region. In this ase, density is approximatelyonstant on thin onentri rings around the enter of the region, so we slie the regioninto suh rings, eah of width �r. For the amount of spae in a slie, we approximate thearea of the thin ring by strething it out into a retangle of length 2�r (irumferene)and width �r. The area of a slie therefore goes into the Riemann sum as 2�r�r, andin the de�nite integral it beomes 2�r dr.� The region is a retangular box with spei�ed dimensions `�w�h, and density is givenas a funtion Æ(z) in mass per unit volume, where z is the vertial distane from thebottom of the box. In this ase, density is approximately onstant on slies parallel tothe bottom of the box, so we slie the region into retangular slies, eah of thikness�z. The volume of a slie therefore goes into the Riemann sum as `w�z, and in thede�nite integral it beomes `w dz.The seond appliation in this setion involves �nding the enter of mass of either a systemof point masses loated at various positions along an axis, or of an objet with known densityfuntion. The enter of mass, x, of a system of n disrete masses m1;m2; : : : ;mn lyingalong the x-axis at positions x1; x2; : : : ; xm respetively is given by:x = Pni=1 ximiPni=1 xi = x1m1 + x2m2 + � � �+ xnmnm1 +m2 + � � �+mnSumming up (position)*(mass) and dividing by the total mass gives us a weighted average ofall the masses, hene telling us the \balaning point" of the system.The enter of mass, x, of an objet lying along the x-axis between x = a and x = b, withmass density Æ(x), is given by: x = R ba x Æ(x) dxR ba Æ(x) dxThe enter of mass, (x; y), of a region in the plane with onstant mass density Æ, is givenby: x = R x Æ Ax(x) dxTotal Mass y = R y Æ Ay(y) dyTotal Masswhere Ax(x) represents the length of strips perpendiular to the x-axis and Ay(y) representsthe length of strips perpendiular to the y-axis.


