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This is a list of terminology and topics covered in the fourth chapter of Calculus, D. Hughes-
Hallet, et. al. 3rd edition. Please consult the text for definitions, statements of properties, and
numerous examples and exercises. Terms in bold face are defined in the text.

The focus of the chapter is on applications of the first and second derivative, in particular, finding
extrema of functions. This is useful for curve sketching and for solving “real-world” problems. We
will primarily cover sections 4.1, 4.3 and 4.5.

Using First and Second Derivatives (Section 4.1) This section builds on Section 2.4, which
made the connection between the sign of f’ and the rate of change of f (f' > 0 implies
[ is increasing and f’ < 0 implies that f is decreasing), and Section 2.6, which made the
connection between the sign of f” and the concavity of f (f” > 0 implies f is concave up and
f" < 0 implies that f is concave down). In this section, local minima and local maxima
are introduced. We will say local extrema when we want to refer to either local minima or
maxima. According to Theorem 4.1, if f is differentiable in an open interval containing a local
extrema p, then f’(p) = 0. Points p where f'(p) =0 or f'(p) is undefined are called critical
points of the function (the value f(p) at a critical point is called the critical value). Thus
we may begin our search for local extrema of a differentiable function by locating the critical
points of f. Since not all critical points are local extrema it is necessary to test each critical
point to determine the behavior of the function at the point.

By the first derivative test, a critical point p of a continuous function f is a local minimum
if f' changes from negative to positive at p and a local maximum if f’ changes from positive
to negative at p. It is often useful to draw a “first-derivative number line” to record the sign
of the derivative in different intervals.

By the second derivative test, if f is a twice differentiable function and f'(p) = 0, p is a
local minimum if f”(p) > 0 (f is concave up at p) and a local maximum if f"(p) < 0 (f is
concave down at p).

A point p is called an inflection point of f if the concavity of f changes at p. This will occur
either if f’ has a local minimum or maximum at p or if f” changes sign at p. In this case,
the “second-derivative number line” is useful for sketching graphs and determining whether
a point with vanishing second derivative is actually an inflection point.

Optimization (Section 4.3) This section introduces global extrema. Here we are concerned
with the behavior of a function on an interval, which might be a bounded interval or the
entire real line. A point p is a global minimum if f(p) < f(z) for all other points z in the
interval and a global maximum if f(p) > f(z) for all other points z in the interval. If the
interval is closed (that is, it includes its endpoints), then the global extrema will be located
at the critical points of f on the interval or at the endpoints. If the interval is open or is the
entire real line, then the global extrema (if they exist) will occur at the critical points of f
on the interval. However, if f takes on values larger than any critical value on the interval as
z approaches the endpoints of the interval or +o0, then f will have no global maximum on
the interval. The analogous statement holds for global minima. In certain situations, it will
be sufficient to determine whether or not a function is bounded on an interval and to find a
lower bound or an upper bound for the function on the interval.



Optimization and Modeling (Section 4.5) This section applies the ideas of Section 4.3 to “real
world” problems. (The problems in this section are also often called “word problems.”) In
these problems, we are asked to find an extreme value of some quantity, often of a physical na-
ture. The problem is presented to us in a prose description, which usually contains numerical
information and might also be accompanied by a diagram illustrating the physical setup. In
order to apply the techniques of Section 4.3, we must identify the important quantities in the
problem, represent them by variables, determine the relationship(s) between the variables,
and represent these relationships as functions. The resulting equation(s) is a mathematical
model of the problem. Once we have the model, we apply the techniques of Section 4.3 to
find the global extrema of the function. Finally, we have to interpret these extrema in the
context of the original problem.

Theorems about Continuous and Differentiable Functions (Section 4.7) In practice, we as-
sume that the calculations we use to produce solutions to extrema problems will lead to
solutions of the problem. In fact, this is not automatic, but depends on the properties of
continuous functions and differentiable functions. The most important of these are:

The Extreme Value Theorem A continuous function on a closed interval has a global
maximum and a global minimum on the interval.

The Mean Value Theorem A differentiable function has the property that between any
two points a and b, there is a third point ¢, so that the slope of the tangent line at ¢ is
the same as the slope of the secant line between (a, f(a)) and (b, f(b)).

The Mean Value Theorem is a consequence of the Extreme Value Theorem. In turn, the
Mean Value Theorem is used to demonstrate the following:

The Increasing Function Theorem If a function has strictly positive derivative on an
interval then it is increasing on the interval. If the derivative is only non-negative, then
the function is non-decreasing.

The Constant Function Theorem If a differentiable function has derivative equal to 0
everywhere in a closed interval, the function is constant.



