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This is a list of terminology and topics covered in the eleventh chapter of Calculus, D. Hughes-
Hallet, et al. 3rd edition. Please consult the text for full definitions, statements of properties, and
numerous examples and exercises. Terms in bold face are defined in the text. This chapter focuses
on differential equations. We covered sections 11.1  11.5.

Differential Equations (Section 11.1) An ordinary differential equation (ODE) is an equa-
tion that relates the derivative(s) of an unknown function to the function itself. A first-
order ODE involves the first derivative of the unknown function, but no higher derivatives.
A second-order ODE involves the second derivative of the unknown function, but no higher
derivatives. If the ODE involves dy for instance, then a solution is a FUNCTION y(z) which
satisfies the ODE. To check that a given function is a solution to a given ODE we PLUG IT
IN to both sides of the differential equation.

Solving an ODE will result in the general solution, which is a family of functions involving
one or more arbitrary constants. (For instance, a second-order ODE will involve two constants,
while a first-order ODE will involve only one.) Given initial condition(s), we can solve for
the values of these arbitrary constants, thus determining a particular solution. An initial-
value problem is an ODE, together with initial condition(s).

Slope Fields (Section 11.2) We can visualize a first-order ODE Z—i’, = f(z,y) using a slope field.
Any solution y(z) has the property that its slope at any point (zg,y) will be given by
TZ‘(wo,yo) = f(xzo,y0). At a selection of points, we plot a small arrow with its tail at the
selected point, and with its head indicating the direction of the tangent line to the solution
curve passing through that point. In the resulting slope field, solution curves may be
sketched in by “following the arrows.”
keeps the arrows tangent to its path will yield a solution curve. Sometimes the shape of these
curves will suggest the general solution (e.g. circles would mean solutions are of the form
z? + y? = r?). Therefore a slope field, together with “guess and check,” may be used to
determine solutions in certain simple cases.

That is, starting at any point, tracing a curve which

Euler’s Method (Section 11.3) Slope fields suggest a simple numerical method of approximating
the solution to a differential equation. One such method is Euler’s Method, which essen-
tially steps along the slope field by a fixed increment Az. Given an initial starting point
y(z9) = yo and an ODE Z—Z = f(z,y), we compute recursively the approximation to the
solution using the formula

Tpi1 = ITp+ Az (1)
Yn+1 = Uﬂ+f(Tﬂ1Uﬂ)AT (2)

starting with (xg,y0). Thus if we began with g = 1 and set Az = 0.2, we would need to
make 5 steps to approximate the solution at x = 2. The formula for y,; is derived by the
fact that % is the slope at the previous point z,,y, which in turn is given by plugging into
the function f(z,y) on the right-hand side of the differential equation.

The error in Kuler’s method is directly proportional to Az. To improve the approximation
we let Az approach 0, but this requires more steps of Euler’s method be computed.



Separation of Variables (Section 11.4) Differential equations of the form Z—Z = g(z)h(y) can be
solved explicitly using the method of separation of variables. Rewrite the equation with
all terms involving y on the left-hand side, and all terms involving = on the right-hand side.
Then integrate both sides, and solve for y in terms of z. An example of an ODE which can

be solved this way is Z—i’, = ky, where k is a constant. We separate variables, and then solve

kx

i % = [ kdxz. The general solution is y = ce®*, where ¢ is an arbitrary constant. Similarly,

the equation g—g = k(y — A), where A is a constant, has the general solution y = ce** + A.

Growth and Decay (Section 11.5) Differential equations may be used to model real-world pro-
cesses, such as exponential growth of an investment (from the compounding of interest), or
the temperature of an object over time (according to Newton’s Law of Heating and Cooling).
One common model is when the rate of change of a quantity is proportional to the quantity
itself (eg. population) leading to the ODE % = kP. The solutions to this ODE are given
by P(t) = Pyek! where P, is the initial amount. When & > 0, this represents growth, while
k < 0 represents decay. Similarly, if the temperature of an object is given by a function T'(¢)
satisfying Newton’s Law of Cooling or Heating, then the rate of change in the tempera-
ture of the object is proportional to the difference in temperature between the object and its
surrounding medium. This results in the equation % = k(T — A), where A is the temperature
of the surrounding medium (assumed constant.) Solutions are given by T'(t) = ce* + A.
Families of solutions which are exponential often involve an equilibrium solution which is
constant for all values of the independent variable. The corresponding solution curve is a
horizontal line. This equilibrium is stable if nearby solutions approach it as the independent
variable approaches infinity, or unstable if nearby solutions veer away from it as the inde-
pendent variable approaches infinity. The type of equilibrium point can be determined from
a slope field or by examing the behavior of the general solution as the independent variable
approaches oo.



