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This is a list of terminology and topics covered in the tenth chapter of Calculus, D. Hughes-
Hallet, et. al. 3rd edition. Please consult the text for definitions, statements of properties, and
numerous examples and exercises. Terms in bold face are defined in the text. We covered sec-
tions 10.1, 10.2, 10.3. Throughout this chapter we will be working with functions that can be
differentiated arbitrarily many times.

Taylor Polynomials. (Section 10.1) The Taylor polynomials for a function y = f(z) near a point
z = a are polynomials used to approximate f near a. We have already seen one instance
of this, the equation of the tangent line for a differentiable function f at a, which is the
first Taylor polynomial at the point. Here we will denote the tangent line by P;(x). The
formula for P is

Pi(2) = f(a) + f'(a)(& — a).

Notice, the tangent line is the unique line passing through (a, f(a)) with slope f'(a). (Keep
in mind that z is the variable and «a is a fixed value.)

The Taylor polynomial of degree n for f near a is denoted P,(z). It is given by the
formula
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Pa(z) = f(a) + f'(a)(z — a) +

Using sigma notation, this formula is written as
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Here f(¥)(a) denotes the k' derivative of f at a and f°(a) = f(a). Note that 0! = 1 by
definition. Taylor polynomials are characterized by the following property: For &k = 0,...n,
the k" derivative of P, at a is equal to the k' derivative of f at a. In symbols, P,gk)(a) =
f(k)(a,). Intuitively, Taylor polynomials give good approximations to f near a, that is, for
near a, P,(z) = f(z). The further z is from a, the worse the approximation. The higher the
degree of the Taylor polynomial, the better the approximation.

Taylor Series (Section 10.2) The Taylor polynomial of degree n for f near a, P,(z), is the n'?
partial sum of a power series. This power series is the Taylor series for f at a. Essentially,
we are letting n — oo in the expression for P,(z).

In sigma notation, we have
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Note that the Taylor series is an example of a power series from Section 9.4. It is important

to remember that this series has an interval of convergence! For any z for which the series

converges, f(x) is equal to the series expansion evaluated at z.



For example, we derived the following important Taylor series in class:
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ATl three series converge for all z € R. If we plug in = 1 into the Taylor series for e” we
obtain an infinite series for the number e:
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Note that the series for sin x contains only odd powers so that sin(—z) = — sinz, that is, sinx

is an odd function. Similarly, cos(—z) = cosz. The Taylor series for cos x is easily derivable
from the Taylor series for sinz by differentiating both sides. These series are related by
Euler’s famous formula:
¢ = cos@ +isind
Finding and Using Taylor Series (Section 10.3) This section shows how to construct new Tay-
lor series from known series by substitution, differentiation and integration. By substi-
tution, we can, for example, produce the Taylor series for €2* from the series for e¢*. That is,

since
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by replacing x by 2z we find that
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Since differentiation of series amounts to term-by-term differentiation, we can calculate the
Taylor series for the derivative of a function by differentiating its series. Similarly, since
integration of series amounts to term-by-term antidifferentiation, we can calculate the Taylor
series for the antiderivative of a function by integrating its series. For example, using the
Taylor series for 1/(1 + 22) (geometric series with ratio r = —z?2)
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we can integrate both sides to obtain the Taylor series for arctan x:

arctanz = r——+—-—-——+—-—+---

These techniques give quick and simple methods for computing Taylor series that are far
easier than doing repeated differentiation. Finally, in this section there are several examples
that use the Taylor polynomial of a function to draw conclusions about the behavior of the
function near the point z = a.



