Math 132: Calculus for the Physical & Life Sciences 2
Spring 2006

Solutions to Practice Questions for Midterm 3

1. Suppose f(0) = —0.5, f(0) = —1 and f"(0) =2
(a) Write down the Taylor polynomial of degree 2 for f near a = 0.
Solution. Py(z) = f(0) + f/(0)z + 5 f"(0)2? = —0.5 — z + 2”.
(b) Use your answer to part (a) to estimate f(0.3).
Solution. Plug 0.3 into Py: P5(0.3) = —0.5 — (0.3) + (0.3)*> = —0.71.

(c) Which (if any) of the following could be the graph of f? (Recall that f(0) = —0.5,
f/(0) = —1 and f”(0) = 2. More than one answer may be correct.)
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Solution. Since f(0) = —0.5 the graph passes through (0, —0,5), so the only two
possibilities are (i) and (iii). Since f/(0) = —1, the function is decreasing at this point,
so it must be figure (i).
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2. Evaluate (find the sum of) the series 5 3 + 9 o + 31
Solution. The series is geometric with » = —2/3 and a = 5. Since |r| < 1, the series

converges, and its sum is % = 3.

3. Use the power series for e” about a = 0 to find the power series for z2¢~* about a = 0.

Express your answer both in summation form, and by writing out the first four nonzero
terms.
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Solution. Slnce e = s, et = Y 0 n, = > 0 n, , and thus
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S 0 n! . The first four terms are 2? — 2° + 2% — 2211,

4. Determine whether the given series converges or diverges. Justify your answers.

(a) 2 3+ 10
n=1

Solution. This series diverges by the integral test since
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Solution. Since 4n*+3n*+5 > 4n?, we have TP < 1 = . Sosince Yo 13
converges (it is a constant multiple of a p-series with p = 2 > 1), the series converges
by the comparison test.

. Let f(z) = v/x. Use the definition to calculate its Taylor polynomial of degree 3 at
a=1.

Solution. f/(z) = 1272 f"(z) = —1273/2 and f"(z) = 22752, At © =1 we have
f1) =1, f'/(1) = 3, f'(1 ) = —2and (1) = 2. The refore the 3rd degree Taylor
polynomial at a = 1is Py(z) =1+ (. — 1) — g(z — 1)? + {5 (z — 1)%.
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(a) Use the ratio test to find the radius of convergence.

Solution.
.z —=2n* |z -2
= lim =
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The ratio test implies convergence when |z — 2|/3 < 1, so —1 < x < 5. The radius of
convergence is 3.
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(b) Investigate the endpoint behavior, and determine the interval of convergence.

Solution. At x = —1 the series becomes >~ | (‘nlg". This is an alternating series and

the terms n—12 decrease to zero, so the series converges.

At x =5, the series is > 7, # This is a p-series with p =2 > 1, so it converges.

The interval of convergence is therefore —1 < x < 5.

. (a) Use the Comparison Test to determine whether or not
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converges.
Solution. Since ”;% > g: = (%)n and the geometric series Yy~ (%)n diverges
(because its ratio is 7 = 3/2 > 1), the series diverges.
(b) Use the Integral Test to determine whether or not
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converges.
Solution. Converges since
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(c) Use the Ratio Test to determine whether or not
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converges.
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Solution. Converges, since lim
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Determine (with justification!) whether or not the following series converge:

=1 > n?+4n +1 =1
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Solution. The first series is a p-series with p = 1/2 < 1, so it diverges. The second
series converges since it is alternating and the terms % decrease to zero. The
third series is a p-series with p = 1.01 > 1 so it converges.

Let f(z) = /14 2 = (1 + 2)"/2. Find the 4th degree Taylor polynomial of f centered
at a = 0. Find a factorial expression for the general term of the Taylor series.
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2*. The first few derivatives are f(0) = 5
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For k£ > 2, the general expression is
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For each of the given power series, find the interval of convergence.
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(In particular, give the radius of convergence, and investigate convergence at the end-
points.)

Solution. For f(z), —
second has radius 3.)

n=1 n=1

: <z < 3. For g(x), 2 <z <8. (The first has radius 1/2, the
The second degree Taylor polynomial of f(z) at a = 0 is pa(x) = A+ Bx + Cx?. What
can you say about the signs of A, B, C' if you know the graph of f(z) is:
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Solution. A = f(1) is negative since the graph lies below the z-axis at x = 1,
B = f’(1) is also negative since the graph is decreasing at z = 1 and C' = %f”(l) is
positive since the graph is concave up at = = 1.



