Math 132: Calculus for the Physical & Life Sciences 2

Spring 2006

Practice Questions for Midterm 2

1. The graph of the function f(x) is shown below.

(a) Use the graph of f to compute the following approximations of $\int_0^8 f(x) dx$.

LEFT(2):

RIGHT(2) : _____

MID(2): _____

TRAP(2): _____

SIMP(2):

(b) [6 points] For each method, decide whether the approximation of $\int_0^8 f(x) dx$ is an overestimate, an underestimate, or that this cannot be determined from the given information. In the case of an overestimate or underestimate, briefly explain your reasoning.

Method	Type of Estimate	Reason
LEFT		
RIGHT		
MID		
TRAP		
SIMP		

- 2. (a) Set up an integral that represents the arclength of the portion of the graph of $y = \sin(x)$ between x = 0 and $x = \pi$. Do not compute the integral.
 - (b) Approximate the integral in part (a) using a left hand sum with n=4 subintervals.
- 3. Rewrite each of the following improper integrals as a limit, or limits. State whether the integral converges or diverges, and compute its value if it converges.

(a)
$$\int_{-1}^{2} \frac{1}{x^3} dx$$

(b)
$$\int_0^2 \frac{1}{\sqrt{4-x^2}} dx$$

(c)
$$\int_0^\infty e^{-4x} \, dx$$

4. Use the comparison test to determine if each of the following improper integrals converges or diverges. You do not need to compute the value of the integral.

(a)
$$\int_1^\infty \frac{x^4}{x^5 + 1} \, dx$$

(b)
$$\int_{1}^{\infty} \frac{\cos(x)}{\sqrt{x^3 + 5}} dx$$

5. Let R denote the region bounded by $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/4$.

- (a) Find the area of R.
- (b) Find the volume of the solid obtained by revolving R about the x-axis.
- 6. Consider the curve described in polar coordinates by the equation $r = \sin(3\theta)$.
 - (a) Sketch the curve.
 - (b) Find the area of the region enclosed by one loop of the curve.
 - (c) Write the equation of the curve in Cartesian coordinates. Hint: Multiply the equation of the curve by r^3 and use the identity $\sin(3\theta) = 3\sin\theta\cos^2\theta \sin^3\theta$.
- 7. Suppose a metal rod of length 2 meters has a mass density $\delta(x) = 5 + 1.2x^2$ kg per meter.
 - (a) Find the total mass of the rod.
 - (b) Find the center of mass of the rod.
- 8. The distribution of length in a certain population of inchworms is described by the pdf $p(x) = c(3x^2 x^3)$ for $0 \le x \le 3$.

2

- (a) Find the value of the constant c.
- (b) Find the proportion of inchworms with length at most 2 cm.

9. Suppose

$$p(x) = \frac{4}{\pi} \cdot \frac{1}{1+x^2}$$

is the probability density function for the quantity x, for $0 \le x \le 1$.

- (a) Find the mean of x.
- (b) Find the median of x.