College of the Holy Cross, Fall Semester, 2005 Math 131, Practice Midterm 2 Solutions

1. Compute the following derivatives. You may use any correct method.

(a)
$$\frac{d}{dx} \left(5x\sqrt{x} - \frac{2}{x^3} + 11x - 4 \right)$$

Solution First rewrite $x\sqrt{x} = x^{3/2}$ and $\frac{2}{x^3} = 2x^{-3}$. Then by the power rule,

$$\frac{d}{dx} \left(5x^{3/2} - 2x^{-3} + 11x - 4 \right) \frac{15}{2} x^{1/2} + 6x^{-4} + 11.$$

(b)
$$\frac{d}{dt}(t^2e^{-5t})$$

Solution By the product rule,

$$\frac{d}{dt}(t^2e^{-5t}) = t^2\frac{d}{dt}(e^{-5t}) + e^{-5t}\frac{d}{dt}(t^2)$$

Using the chain rule on the first term, this equals

$$t^2e^{-5t}(-5) + e^{-5t}(2t)$$

which simplifies to $(2t - 5t^2)e^{-5t}$.

(c)
$$\frac{d}{dz}8(z^2+4\cos z+2)^3$$

Solution By the chain rule,

$$\frac{d}{dz}8(z^2+4\cos z+2)^3=24(z^2+4\cos z+2)^2(2z-4\sin z).$$

(d)
$$\frac{d}{dx} \left(\frac{x}{\sin x} \right)$$

Solution By the quotient rule,

$$\frac{d}{dx} \left(\frac{x}{\sin x} \right) = \frac{\sin x - x \cos x}{\sin^2 x}$$

2. The graph of a function f is shown below with several points marked. Check the appropriate boxes.

Point at which	A	B	C	D	E	F	G
f is not continuous		\checkmark	√				\checkmark
f is not differentiable	√	√	√		✓	√	\checkmark

3. Compute the indicated limits. Show all work for full credit.

(a)
$$\lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 4x + 4}$$

Solution Since $\lim_{x \to 1} x^2 - 4x + 4 = 1 \neq 0$,

$$\lim_{x \to 1} \frac{3x^2 - 5x - 2}{x^2 - 4x + 4} = \frac{\lim_{x \to 1} 3x^2 - 5x - 2}{\lim_{x \to 1} x^2 - 4x + 4} = \frac{-4}{1} = -4$$

(b)
$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{x^2 - 4x + 4}$$

Solution Since $\lim_{x\to 2} 3x^2 - 5x - 2 = 0$ and $\lim_{x\to 2} x^2 - 4x + 4 = 0$, we cannot just "plug in" to compute the limit. Factoring gives

$$\frac{3x^2 - 5x - 2}{x^2 - 4x + 4} = \frac{(x - 2)(3x + 1)}{(x - 2)^2} = \frac{3x + 1}{x - 2} \qquad \text{for } x \neq 2$$

The resulting function $\frac{3x+1}{x-2}$ has a vertical asymptote at x=2 since x=2 is a root of the denominator and not a root of the numerator. Consequently

$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{3x + 1}{x - 2}$$

does not exist.

(c)
$$\lim_{x \to 1^{-}} 3 \cdot \frac{x-1}{|x-1|} + 1$$

Solution For x < 1, x - 1 < 0 so |x - 1| = -(x - 1) and therefore

$$3 \cdot \frac{x-1}{|x-1|} + 1 = 3 \cdot \frac{x-1}{-(x-1)} + 1 = -3 + 1 = -2$$

SO

$$\lim_{x \to 1^{-}} 3 \cdot \frac{x-1}{|x-1|} + 1 = -2.$$

4. Each part refers to the graph shown.

(a) Find all intervals on which f(x) > 0.

Solution The graph lies above the x-axis between B and E, so f(x) > 0 for B < x < E.

(b) Find all intervals on which f'(x) > 0.

Solution The function is increasing from A to D, so f'(x) > 0 for A < x < D.

(c) Find all intervals on which f''(x) > 0.

Solution The graph is concave up from B to C, so f''(x) > 0 for B < x < C.

5. (a) State the limit definition of the derivative f'(x).

Solution

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(b) Use the **definition** to compute the derivative function of $f(x) = \frac{1}{3x}$.

Solution

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{3(x+h)} - \frac{1}{3x}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x - (x+h)}{3x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{-h}{3xh(x+h)}$$

$$= \lim_{h \to 0} \frac{-1}{3x(x+h)}$$

$$= -\frac{1}{3x^2}$$

(c) Find the tangent line to the graph of $f(x) = \frac{1}{3x}$ at x = 2.

Solution By part (b), the slope of the tangent line at x=2 is $f'(2)=-\frac{1}{3(2)^2}=-\frac{1}{12}$. Since $f(2)=\frac{1}{6}$, the line passes through the point $(2,\frac{1}{6})$. Its equation is therefore

$$y - \frac{1}{6} = -\frac{1}{12}(x - 2)$$

by the point-slope formula.

6. The world's population is about $P(t) = 6e^{0.013t}$ billion people, with t measured in years since 1999. Find P'(17). Write a sentence or two explaining the meaning of your answer; be sure to include a discussion of units.

Solution By the chain rule

$$P'(t) = 6e^{0.013t} \cdot (0.013)$$

so $P'(17) = 6e^{0.013(17)} \cdot (0.013) \approx 0.09729122758$. This means that in 2016 the world population will be growing at a rate of about 97.3 million people per year.