MATH 126-01 Calculus for the Social Sciences II

Exam #1

February 14, 2008

Prof. G. Roberts

SOLUTIONS

1. Let $g(x) = 36 - x^2$ over the interval $0 \le x \le 6$.

(a) Approximate the area under the graph of g from $0 \le x \le 6$ by using **three** rectangles and left endpoints (Left-hand Sum). (5 pts.)

Answer: Since there are three rectangles whose total width covers a distance of 6, each rectangle has a width of 2. Therefore, LHS = 2(g(0)+g(2)+g(4)) = 2(36+32+20) = 176.

(b) Sketch the graph of g along with the three rectangles used in the Left-hand Sum from part (a). Is your sum an overestimate or underestimate? (5 pts.)

Answer: Since the rectangles cover more area than what is under the curve, the Lefthand Sum is an overestimate.

(c) Approximate the area under the graph of g by using **three** rectangles and midpoints (Midpoint Sum). (No sketch is required for this part.) (5 pts.)

Answer: MS = 2(g(1) + g(3) + g(5)) = 2(35 + 27 + 11) = 146

(d) Use calculus to compute the **exact** area under g from $0 \le x \le 6$. (6 pts.)

Answer: By the Fundamental Theorem of Calculus (FTC), part II, the exact area can be found by computing:

$$\int_0^6 36 - x^2 \, dx = 36x - \frac{x^3}{3} \Big|_0^6 = 216 - 72 - 0 = 144$$

- 2. Define $F(x) = \int_0^x f(t) dt$ for $0 \le x \le 5$, where the graph of f(t) is given below.
 - (a) Find F(0) and F(2). (5 pts.)

Answer: $F(0) = \int_0^0 f(t) dt = 0$ and $F(2) = \int_0^2 f(t) dt = \frac{1}{2} \cdot 2 \cdot 1 = 1$ (area of triangle).

(b) Find F'(3) and F''(1). (6 pts.)

Answer: Using FTC, part I, we have that F'(x) = f(x) and also F''(x) = f'(x). Therefore, F'(3) = f(3) = -1 (from the graph of f) and F''(1) = f'(1) = -1/2 since the slope of the graph of f at x = 1 is -1/2.

(c) On what interval(s) is F decreasing? (4 pts.)

Answer: Again, by FTC, part I, we have that F'(x) = f(x). So F is decreasing when F' < 0 or when f < 0. The graph of f is below the horizontal axis (f < 0) when 2 < x < 4.

(d) Over what interval(s) is F concave up? (4 pts.)

Answer: Using the fact that F''(x) = f'(x) (from part **(b)**), we see that F is concave up when F'' > 0 or when f' > 0. From the graph of f, we see that f is increasing when 3 < x < 5.

3. Evaluate each indefinite integral. (18 pts.)

$$\mathbf{a)} \int 3e^x - \frac{1}{\sqrt{x}} \, dx$$

Answer: $\int 3e^x - \frac{1}{\sqrt{x}} dx = \int 3e^x dx - \int x^{-1/2} dx = 3e^x - 2x^{1/2} + c$

b) $\int x^2 (1-x^3)^4 dx$

Answer: This is a *u*-sub with $u = 1 - x^3$. Let $u = 1 - x^3$, then $du = -3x^2 dx$ or $(-1/3)du = x^2 dx$. The integral is transformed into

$$\int u^4 \cdot -\frac{1}{3} du = -\frac{1}{3} \int u^4 du = -\frac{1}{3} \cdot \frac{u^5}{5} + c = -\frac{1}{15} u^5 + c = -\frac{1}{15} (1 - x^3)^5 + c$$

c)
$$\int \frac{x+1}{x^2+2x+7} \, dx$$

Answer: This is also a *u*-sub with $u = x^2 + 2x + 7$. Then du = 2x + 2 dx or du/2 = x + 1 dx. The integral is transformed into

$$\int \frac{1}{u} \cdot \frac{du}{2} = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + c = \frac{1}{2} \ln|x^2 + 2x + 7| + c$$

4. Evaluate each definite integral. (21 pts.)

a)
$$\int_0^{\pi/2} e^{\cos\theta+1} \sin\theta \ d\theta$$

Answer: This is a *u*-sub with $u = \cos \theta + 1$. Then $du = -\sin \theta \ d\theta$ or $-du = \sin \theta \ d\theta$. It is a bit easier to change the limits of integration as well. Thus, we have $\theta = 0 \Longrightarrow u = \cos(0) + 1 = 2$ and $\theta = \pi/2 \Longrightarrow u = \cos(\pi/2) + 1 = 1$. The integral is transformed into

$$\int_{2}^{1} e^{u} \cdot -du = -\int_{2}^{1} e^{u} du = \int_{1}^{2} e^{u} du = e^{u}|_{1}^{2} = e^{2} - e = e(e-1)$$

b)
$$\int_0^1 \frac{2}{t^2+1} dt$$

Answer: This integral is straight-forward if you remember the derivative of $\tan^{-1} t$. This problem is not a u-sub with $u = t^2 + 1$ because then $du = 2t \ dt$ but there is no t sitting in the integrand.

$$\int_0^1 \frac{2}{t^2 + 1} dt = 2 \tan^{-1} t \Big|_0^1 = 2 \tan^{-1} (1) - 2 \tan^{-1} (0) = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2}$$

Note that the answer is in radians because radians is a real, physical measurement (unlike degrees). An answer of 90 makes no sense because the area under the curve can be no bigger than 2.

c)
$$\int_{-3}^{3} -2\sqrt{9-x^2} \, dx$$

Answer: Although this looks like the integral of an odd function over a symmetric interval, its actually the area under a semi-circle of radius 3. We have

$$\int_{-3}^{3} -2\sqrt{9-x^2} \, dx = -2 \int_{-3}^{3} \sqrt{9-x^2} \, dx = -2 \cdot \frac{9\pi}{2} = -9\pi$$

using the formula for the area of a semi-circle $A = (1/2)\pi r^2$. To see that we are dealing with a circle of radius 3, let $y = \sqrt{9 - x^2}$ and manipulate this expression into $x^2 + y^2 = 3^2$ which is a circle centered at the origin of radius 3. The fact that it is a semi-circle (rather than a quarter-circle) comes from the limits of integration ranging from -3 to 3.

- 5. Some final conceptual questions: (21 pts.)
 - (a) Find the antiderivative F(x) for $f(x) = \sec^2 x e^{3x} + 2$ satisfying F(0) = 1.

Answer: We find the general antiderivative by integrating f. This gives $F(x) = \tan x - \frac{1}{3}e^{3x} + 2x + c$. The tricky part here is that

$$\int e^{3x} dx = \frac{1}{3}e^{3x},$$

a formula that can be checked by differentiation or derived using a u-sub with u = 3x. Then we solve F(0) = 1 for c, obtaining

$$1 = \tan(0) - \frac{1}{3}e^{0} + 0 + c \implies c = \frac{4}{3}.$$

Thus, our final answer is

$$F(x) = \tan x - \frac{1}{3}e^{3x} + 2x + \frac{4}{3}.$$

(b) Given that $\int_{2}^{5} p(t) dt = 3$ and $\int_{-1}^{5} p(t) dt = 7$, find the value of $\int_{-1}^{2} p(t) dt$.

Answer: Let $A = \int_{-1}^{2} p(t) dt$. Using

$$\int_{-1}^{2} p(t) dt + \int_{2}^{5} p(t) dt = \int_{-1}^{5} p(t) dt$$

we have the simple equation A + 3 = 7 so that our answer is A = 4.

(c) Find $\frac{d}{dx} \int_{\sin x}^{3} e^{t^3} dt$.

Answer: This is FTC, part I along with the chain rule. We have

$$\frac{d}{dx} \int_{\sin x}^{3} e^{t^3} dt = -\frac{d}{dx} \int_{3}^{\sin x} e^{t^3} dt = -e^{(\sin x)^3} \cdot \cos x$$

where the $\cos x$ comes from taking the derivative of the "inside" function $\sin x$ in the chain rule.