MATH 125 Sample Final Exam Questions

Prof. G. Roberts

1. Circle the number corresponding to the graph of each function. Each square in the figures is 1 unit by 1 unit, and the bold lines are the axes.

(a)	$\frac{1}{2}x - 2$	I	II	III	IV	V	VI	VII	VIII	IX
(b)	$\sin(4x)$	I	II	III	IV	V	VI	VII	VIII	IX
(c)	$x^3 - 2x - 1$	I	II	III	IV	V	VI	VII	VIII	IX
(d)	$\frac{x}{x-1}$	I	II	III	IV	V	VI	VII	VIII	IX
(e)	e^{-x}	I	II	III	IV	V	VI	VII	VIII	IX
(f)	$x^2 - 2x - 1$	I	II	III	IV	V	VI	VII	VIII	IX
(g)	$4\sin(x)$	I	II	III	IV	V	VI	VII	VIII	IX

- 2. Find the equation of the tangent line to the curve defined by $e^{xy} + x^2 + y^2 = 10$ at the point (0,3).
- 3. Suppose that D(t) is the depth (in inches) of snow on your lawn t days after January 1st. Provide an interpretation in words of the equation $D^{-1}(5) = 3$?
- 4. Compute the derivative of each function. Simplify your answer as best as possible.
 - (a) $f(x) = x^2 e^{\tan x}$
 - **(b)** $g(t) = \frac{1}{\sqrt{t^4 + 4t^3}}$
 - (c) $h(x) = \cos(2^x)$
 - (d) $y = \tan^{-1}(\ln(5x));$
- 5. Consider the graph of f(x) and g(x) shown below.

- (a) At what points (if any) is f(x) **NOT** differentiable?
- **(b)** Sketch the graph of f'(x).
- (c) Sketch the graph of g'(x).
- 6. Using the **LIMIT definition** of the derivative function, calculate f'(x) for $f(x) = \frac{4}{x}$.
- 7. Suppose that $f(x) = x^2 e^{-x}$.
 - (a) Find $\lim_{x\to-\infty} f(x)$ and $\lim_{x\to\infty} f(x)$.
 - (b) Calculate and simplify f'(x) and f''(x). Hint: Factor!
 - (c) Locate and classify (min, max or neither) the critical points of f.

- (d) Locate the inflection points of f.
- (e) Using all of the information obtained above, sketch the graph of f(x).
- 8. You wish to construct a small box by removing four congruent squares from the corners of a 3 inch by 8 inch piece of cardboard. After removing the four corners you fold up the sides to create a box with an open top. What are the dimensions of the box of largest volume you can make in this manner?
- 9. A manufacturer has been selling 1000 television sets a week at \$450 each. A market survey indicates that for each \$10 rebate (discount) offered to the buyer, the number of sets sold will increase by 100 per week.
 - (a) Find the demand function.
 - (b) How large a rebate should the company offer the buyer in order to maximize its revenue?
 - (c) If its weekly cost function is C(x) = 68,000 + 150x, how should the manufacturer set the size of the rebate in order to maximize its profit?
- 10. TRUE or FALSE. Decide whether the following statements are true or false. If true, provide an explanation. If false, correct the statement or provide a counterexample. You must provide justification for your answer to receive any credit.
 - (a) Suppose that y = f(x) is an **exponential** function. If increasing x by one unit increases y by a factor of 3, then increasing x by two units will increase y by a factor of 6.
 - (b) If a function f(x) is continuous at x = a, then it is differentiable at x = a.
 - (c) The graph of g(x) = f(-x) + 3 is obtained by shifting the graph of f(x) vertically up by 3 units and reflecting it about the y-axis.
 - (d) The $\lim_{h\to 0} \frac{\sin h h}{h^2}$ does not exist.
 - (e) If $s(t) = 2t^3 15t^2 + 24t + 16$ represents the position (in feet) of a ball at time t, the total distance traveled by the ball from t = 0 to t = 4 is 38 feet.