Limit Theorems from Section 2.3

Suppose $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then

- 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ (limit of the sum = sum of the limits)
- 2. $\lim_{x\to a} [f(x) g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$ (limit of the difference = difference of the limits)
- 3. $\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$ for any constant c (constants pull out)
- 4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ (limit of the product = product of the limits)
- 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$ (limit of the quotient = quotient of the limits)
- 6. $\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} f(x)\right]^n$ where n is any positive integer (follows from 4.)
- 7. $\lim_{x\to a} c = c$ for any constant c
- $8. \lim_{x \to a} x = a$
- $9. \lim_{x \to a} x^n = a^n$
- 10. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ where n is a positive integer. (If n is even, we assume that a>0.)
- 11. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ where n is a positive integer. (If n is even, we assume that $\lim_{x\to a} f(x) > 0$.)

Direct Substitution Property If f is a polynomial or a rational function and a is in the domain of f, then $\lim_{x\to a} f(x) = f(a)$.

Simplification Property If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided the limits exist.

Limit Existence Theorem $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x)$.

The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then $\lim_{x\to a} g(x) = L$.