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Noise Characterization of Block-Iterative
Reconstruction Algorithms:
II. Monte Carlo Simulations

Edward J. Soares*, Member, IEEE, Stephen J. Glick, Member, IEEE, and John W. Hoppin

Abstract—In Soares et al. (2000), the ensemble statistical prop-
erties of the rescaled block-iterative expectation-maximization
(RBI-EM) reconstruction algorithm and rescaled block-iterative
simultaneous multiplicative algebraic reconstruction technique
(RBI-SMART) were derived. Included in this analysis were the
special cases of RBI-EM, maximum-likelihood EM (ML-EM) and
ordered-subset EM (OS-EM), and the special case of RBI-SMART,
SMART. Explicit expressions were found for the ensemble mean,
covariance matrix, and probability density function of RBI recon-
structed images, as a function of iteration number. The theoretical
formulations relied on one approximation, namely that the noise in
the reconstructed image was small compared to the mean image.
In this paper, we evaluate the predictions of the theory by using
Monte Carlo methods to calculate the sample statistical properties
of each algorithm and then compare the results with the theoret-
ical formulations. In addition, the validity of the approximation
will be justified.

Index Terms—Covariance matrix, maximum-likelihood ex-
pectation-maximization, noise characterization, ordered subsets,
rescaled block-iterative image reconstruction, simultaneous mul-
tiplicative algebraic reconstruction technique.

I. INTRODUCTION

P art I of this paper [1], characterized the ensemble statis-
tical properties of the rescaled block-iterative expecta-

tion-maximization (RBI-EM) reconstruction algorithm and
rescaled block-iterative simultaneous multiplicative algebraic
reconstruction technique (RBI-SMART). Also included in this
analysis were the special cases of RBI-EM, maximum-likelihood
EM (ML-EM) and ordered-subset EM (OS-EM), and the special
case of RBI-SMART, SMART. Obtained were explicit expres-
sions that approximate the ensemble mean, covariance matrix,
and probability density function (PDF) for images reconstructed
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using the aforementioned algorithms. The theoretical formula-
tions relied on one approximation, namely that the noise in the
reconstructed image was small compared to the mean image.

The theoretical approach taken in Part I [1], which facilitates
our derivation of analytic expressions for the ensemble statis-
tical parameters for the aforementioned algorithms, was first
motivated by the work of Barrett et al. [2], [3] for the ML-EM
algorithm. Their approach in [2] was to linearize the ML-EM
algorithm in log-image space, which then allowed for the com-
putation of the approximate ensemble statistical parameters.
Subsequently, they confirmed the validity of their approach in
[3] using Monte Carlo methods. Researchers have also inves-
tigated the noise properties for regularized versions of the EM
algorithm, including Fessler [4] and Wang and Gindi [5], [6].

Knowledge of the ensemble statistical properties of block it-
erative reconstructed images is important for several reasons.
For example, human observers tend to exhibit decreased per-
formance in signal detection tasks with images containing cer-
tain types of correlated noise [7]. Information regarding the
noise correlation structure, in the form of the ensemble covari-
ance matrix, would then be helpful in predicting such decreased
performance. In addition, the ensemble mean and covariance
matrix are useful for image quality evaluation, particularly for
computing model observer signal-to-noise ratios for detection
or estimation tasks using mathematical model observers [8], [9].
In some cases, image reconstruction algorithms such as OS-EM
have been evaluated using image quality metrics derived from
sample statistical quantities [10]. However, an adequate sample
size must be used for estimating the sample statistical param-
eters, in order to accurately estimate their respective ensemble
counterparts. This is especially impractical when the dimension-
ality of the feature vector is large or if the inverse of the entire
image covariance matrix is needed. In such cases, it is necessary
to know the ensemble statistical parameters of the reconstructed
images.

In this paper, the theoretical formulations derived in Part I
[1] will be evaluated by comparing the approximate ensemble
statistical parameters with their respective sample counterparts.
Using Monte Carlo methods, we will calculate sample estimates
of the mean, covariance matrix, and point PDF of RBI recon-
structed images for various noise levels, iteration points, and
subset orderings, for purposes of comparison. In addition, the
approximation that serves as the basis for the theoretical for-
mulations in Part I [1] will be justified to determine when the
theory break down. Thus, we will ascertain under what condi-
tions the theoretical formulations accurately predict the true en-
semble statistical properties.
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Following the notation used in Part I [1], we shall denote vec-
tors with lower-case bold letters, matrices with upper-case bold
letters, and scalars with lower-case letters.

II. METHODS

A. Sample Image Statistics

In order to test the predictions of the theory outlined in Part
I [1], Monte Carlo techniques were employed. By generating a
large sample of noisy image reconstructions, we were able to
calculate sample estimates of the mean, covariance matrix, and
point PDF for the RBI-EM, OS-EM, and RBI-SMART algo-
rithms. As the sample size increases, the sample statistical mea-
sures better estimate their true ensemble counterparts. There-
fore, by comparing the approximate ensemble and sample sta-
tistical properties, one can determine to what degree the theoret-
ical formulations accurately predict the true ensemble statistical
properties of the RBI reconstructed images.

Let us denote the th noisy two-dimensional (2-D) image es-
timate at the th iteration by , where the reconstructed
image has been lexicographically ordered into a column
vector and is the sample size. Thus, is the sample
of noisy reconstructions used to determine the sample statis-
tical parameters at the th iteration. By definition, the sample

mean image is given by

(1)

Also, the unbiased form of the sample covariance matrix
is given by

(2)

Furthermore, from this set of noisy images, one can also
compute a normalized histogram for any particular RBI recon-
structed image pixel, which could be used to estimate the uni-
variate point PDF for that given pixel.

When is large, as is usually the case for clinical images, it
is impossible to examine the entire covariance matrix for pur-
poses of comparison. Thus, we will only consider selected parts
of the covariance matrix when making our evaluations, namely
the variance and local covariance images as described by Wilson
et al. [3]. The variance image is constructed by ordering the
diagonal elements of the covariance matrix into a 2-D image.
Since the noise is nonstationary in single photon emission com-
puted tomography [11], the correlation structure changes with
pixel location. Therefore, the entire covariance matrix is needed
to describe the noise structure at every pixel location. However,
one can use the definition of the local covariance [3], [12] to
examine the noise properties at a particular image pixel loca-
tion. Based upon our lexicographic ordering of the original 2-D
object into a vector, the local covariance at pixel is de-
termined by unlexicographically ordering row (or column) of
the covariance matrix into a 2-D image.

B. Ensemble Image Statistics

Part I [1] derived analytic expressions for the ensemble mean,
covariance matrix, and PDF for the RBI methods. This deriva-
tion was accomplished by assuming a low-noise approximation,

Fig. 1. Simulated images of the uniform disk object (left), MCAT activity map
(center), and MCAT attenuation map (right) used in our study.

that states that the noise in the reconstructed image is small com-
pared to the mean image. By linearizing the RBI algorithms in
log-image space, they were able to show that the noise in the log-
arithm of the reconstructed image could be expressed as a linear
transformation of the noise in the projection data. With knowl-
edge of the noise-free projection data, one could then calculate
the ensemble statistical properties for images reconstructed with
any of the RBI algorithms.

For comparison with their respective sample counterparts, we
computed the approximate ensemble mean, covariance matrix,
and point PDF for the RBI-EM, OS-EM, and RBI-SMART al-
gorithms, using [1, eqs. (87), (88), and (90)].

C. Simulations

In Fig. 1, we show the two objects used in our evaluations.
The first is a uniformly emitting disk of radius 13 pixels, where
the image size is 32 32 pixels. The second object consists of
a single 128 128 slice through an anthropomorphic phantom
called the MCAT [13], along with corresponding nonuniform
attenuation map. The disk object will be used in our com-
prehensive evaluation, whereas the results obtained using the
MCAT are meant to demonstrate the effectiveness of the theory
for a more complex object and more realistic imaging scenario.
For the disk object, noise-free projection data of dimension
32 32 were created using an analytic ray-driven projector
[14] based on Siddon’s ray-tracing algorithm [15]. Nonuniform
photon attenuation, distance-dependent detector response, and
scatter were not modeled in the simulation.

A total of 10 000 noisy data sets, for each of three noise levels,
were generated by adding pseudorandom Poisson noise to the
noise-free projection data. Considered were a high signal-to-
noise case of 1 500 000 counts, a moderate signal-to-noise case
of 500 000 counts, and a low signal-to-noise case of 50 000
counts. These levels were selected based upon the previous work
of Wilson et al. [3]. The data sets were then reconstructed with
each of the three aforementioned algorithms.

The algorithms all rely on the subset orderings of the data and
the stopping point in the iteration process. We chose to examine
the cases of 4 subsets (8 angles per subset), 8 subsets (4 angles
per subset), and 16 subsets (2 angles per subset). These were
selected based upon the fact that faster acceleration is achieved
with increasing numbers of subsets. Not all possible combina-
tions of noise level and subset ordering were considered. In-
stead, we chose to fix one parameter and vary the other. The
noise level-subset ordering pairs considered are listed in Table I.

Additionally, the stopping points in the iterative process con-
sidered were 16, 32, 64, 128, 256, 512, and 1024 iterations. As
discussed in Part I [1], we consider one iteration of a block-iter-
ative method to be a single pass through one subset of the data.
Most authors regard one iteration as a complete pass through
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TABLE I
THE VARIOUS COMBINATIONS OF NOISE LEVEL AND SUBSET ORDERING USED

IN OUR ANALYSIS OF THE RBI ALGORITHMS

all of the subsets, which we call a “full iteration.” To maintain
consistency with our previous convention, we shall present all
results in terms of full iterations of each algorithm. Thus, the
aforementioned stopping points correspond to different full it-
erations, depending on how many subsets are used.

For the MCAT simulation, noise-free projection data of di-
mension 128 128 were created using the same ray-driven pro-
jector which modeled the effects of nonuniform photon attenu-
ation. From this, we generated 1000 noisy data sets by adding
pseudorandom Poisson noise to the noise-free projection data.
A single count level of 500 000 counts was considered. The
data sets were reconstructed with RBI-EM, OS-EM, and RBI-
SMART, using 8 subsets (16 angles per subset) and stopping at
iteration 128 (16 full iterations).

D. Measures

In our evaluations of the theoretical formulations, we at-
tempted to quantify the discrepancies between the theoretical and
MonteCarloestimatesof thetrueensemblestatisticalparameters,
using measures described in Wilson et al. [3]. One measure used
was the root mean-square (RMS) percent error, defined to be

(3)

Due to the fact that the RMS measure contains errors from the
use of the Monte Carlo estimate to represent the true ensemble
statistic, we also employed the average (AVG) percent bias, de-
fined to be

(4)

In either measure, the quantity stat can either represent the
mean or variance, depending on the statistic being compared.
With this in mind, refers to the Monte Carlo estimate
of the particular statistic at pixel , while refers to the
analogous theoretical estimate. Both the RMS % error and AVG
% bias were quantified in a region-of-interest within the interior
of the disk that contained total pixels.

III. RESULTS

A. Probability Distributions

In Fig. 2, we compare the approximate ensemble and sample
point PDF’s for pixel (16, 16), which is near the center of the
disk object, for RBI-EM, OS-EM and RBI-SMART recon-
structed images. The projection data contained 500 000 total
counts and were partitioned into 8 subsets. Shown are sample
point PDF’s generated from 10 000 noisy realizations for 2,
16, and 128 full iterations of each algorithm. The lines indicate

Fig. 2. Probability density functions (PDF’s) for a pixel near the center of
the disk for the RBI-EM (top), OS-EM (center), and RBI-SMART (bottom)
algorithms. Shown are sample PDF’s for 2 (�), 16 (4), and 128 ( ) full
iterations of each algorithm. The lines indicate the predicted values of the
log-normal point PDF to the sample PDF. The projection data contained
500 000 total counts and were partitioned into 8 subsets.

the predicted values of the log-normal point PDF to the sample
point PDF using [1, eq. (90)].
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Fig. 3. Ensemble mean (top row) and sample mean (bottom row) images of
the disk object for the RBI-EM (left), OS-EM (center), and RBI-SMART (right)
algorithms. Both ensemble and sample mean images were generated for 16 full
iterations of each algorithm. The projection data contained 500 000 total counts
and were partitioned into 8 subsets.

We can see that the approximate ensemble point PDF’s show
excellent agreement with their respective sample counterparts,
at each iteration point. However, slight deviations between the
sample points and solid curves can be seen for higher iterations.
This is the effect of the low-noise approximation becoming less
valid, as the noise is no longer small compared to the mean
image. Also, the respective point PDF’s becomes wider, ex-
hibiting an increase in pixel variance. This effect is due to the
buildup of noise in the data as iteration increases.

B. Comparison Between Ensemble and Sample Parameters

1) Mean Image: The results comparing the approximate en-
semble and sample means are shown in Figs. 3 and 4, and Table II.
In Fig. 3, we show images of the approximate ensemble mean and
sample mean for the three algorithms. The object considered was
the uniform disk with 500 000 total counts in the projection data,
which were partitioned into 8 subsets. The images correspond to
full iteration 16. Fig. 4 illustrates central profiles through the re-
spective images in Fig. 3. In Table II, we show estimation errors
between the approximate ensemble and sample mean images as
a function of full iteration number for the three algorithms.

Examining Figs. 3 and 4, we qualitatively note the excellent
agreement between the respective approximate ensemble and
sample means. Such agreement at the other iteration points can
also be inferred by examining Table II. We note that at each it-
eration, the RMS % error is less than 2% and the AVG % bias is
less than 1% in all cases. These measures were also computed
(although not shown) for the case of the 500 000 count data par-
titioned into 4 subsets and 16 subsets. In the 4-subset case, the
RMS % error and AVG % bias were all less than 1% at each iter-
ation. In the 16-subset case, the RMS % error and AVG % bias
were all less than 3% at each iteration. Considering the case of
the 1 500 000 count data partitioned into 8 subsets, the RMS %
error and AVG % bias were all less than 1% at each iteration.

However, when considering the 50 000 count data partitioned
into 8 subsets, the RMS % error and AVG % bias were higher.
The RBI-EM algorithm yielded errors less than 2% at each it-
eration, the errors for the OS-EM algorithm were less than 4%
and for RBI-SMART, less than 8%. This increase in error is due
to the fact that the low-noise approximation is less valid when
the data are low-count.

Fig. 4. Central profiles through the ensemble mean (solid lines) and sample
mean (�) images of the disk object, for the RBI-EM (top), OS-EM (center), and
RBI-SMART (bottom) algorithms, as shown in Fig. 3.

2) Variance Image: The results comparing the approximate
ensemble and sample variance images are shown in Figs. 5 and
6, and Tables III–VII. In Fig. 5, we show images of the ap-
proximate ensemble variance and sample variance for the three
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TABLE II
ESTIMATION ERRORS BETWEEN THE APPROXIMATE ENSEMBLE AND SAMPLE MEANS AS A FUNCTION OF ITERATION NUMBER FOR THE RBI-EM, OS-EM AND

RBI-SMART ALGORITHMS. THE PROJECTION DATA CONTAINED 500 000 TOTAL COUNTS, AND WERE PARTITIONED INTO 8 SUBSETS

TABLE III
ESTIMATION ERRORS BETWEEN THE APPROXIMATE ENSEMBLE AND SAMPLE VARIANCES AS A FUNCTION OF ITERATION NUMBER FOR THE RBI-EM, OS-EM AND

RBI-SMART ALGORITHMS. THE PROJECTION DATA CONTAINED 1 500 000 TOTAL COUNTS, AND WERE PARTITIONED INTO 8 SUBSETS

TABLE IV
ESTIMATION ERRORS BETWEEN THE APPROXIMATE ENSEMBLE AND SAMPLE VARIANCES AS A FUNCTION OF ITERATION NUMBER FOR THE RBI-EM, OS-EM AND

RBI-SMART ALGORITHMS. THE PROJECTION DATA CONTAINED 500 000 TOTAL COUNTS AND WERE PARTITIONED INTO 8 SUBSETS

TABLE V
ESTIMATION ERRORS BETWEEN THE APPROXIMATE ENSEMBLE AND SAMPLE VARIANCES AS A FUNCTION OF ITERATION NUMBER FOR THE RBI-EM, OS-EM AND,

RBI-SMART ALGORITHMS. THE PROJECTION DATA CONTAINED 50,000 TOTAL COUNTS AND, WERE PARTITIONED INTO 8 SUBSETS

algorithms. The object considered was the uniform disk with
500 000 total counts in the projection data, which were parti-
tioned into 8 subsets. The images correspond to full iteration
16. Fig. 6 illustrates central profiles through the respective im-
ages in Fig. 5. In Tables III–VII, we show estimation errors be-
tween the approximate ensemble and sample variance images
as a function of full iteration number for the three algorithms.
Tables III, IV, and V reflect results when the number of subsets
was fixed at 8 and the count level decreased, while Tables VI, IV
and VII reflect results when the count level was fixed at 500 000
counts and the number of subsets increased.

Let us first consider the results when the data partitioning is
fixed at 8 subsets and the noise level decreases from the high-
count case of 1 500 000 to the low-count case of 50 000 counts.
Subsequently, we will evaluate the results when the noise level
is fixed at a moderate count level of 500 000 counts and the data
partitioning increases from 4 subsets to 16 subsets.

Examining Figs. 5 and 6, we again qualitatively note the
strong agreement between the respective approximate ensemble
and sample variance images. Such agreement is typical for low
iterations and moderate to high count levels. As with the mean
images, deviations occur when iteration increases or when the
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TABLE VI
ESTIMATION ERRORS BETWEEN THE APPROXIMATE ENSEMBLE AND SAMPLE VARIANCES AS A FUNCTION OF ITERATION NUMBER FOR THE RBI-EM, OS-EM AND

RBI-SMART ALGORITHMS. THE PROJECTION DATA CONTAINED 500 000 TOTAL COUNTS AND, WERE PARTITIONED INTO 4 SUBSETS

TABLE VII
ESTIMATION ERRORS BETWEEN THE APPROXIMATE ENSEMBLE AND SAMPLE VARIANCES AS A FUNCTION OF ITERATION NUMBER FOR THE RBI-EM, OS-EM AND,

RBI-SMART ALGORITHMS. THE PROJECTION DATA CONTAINED 500 000 TOTAL COUNTS AND WERE PARTITIONED INTO 16 SUBSETS

Fig. 5. Ensemble variance (top row) and sample variance (bottom row) images
of the disk object for the RBI-EM (left), OS-EM (center), and RBI-SMART
(right) algorithms. The ensemble and sample variance images were generated
for 16 full iterations of each algorithm. The projection data contained 500 000
total counts and were partitioned into 8 subsets.

low-noise approximation is violated. This agreement at the
other iteration points can be seen by examining Tables III–V.

When the data are high count (Table III), the RMS % errors
are all less than 2% for each algorithm, with the exception of
OS-EM, which shows an error exceeding 7% for iteration 128.
Likewise, the AVG % bias is less than 2% for each algorithm,
with the exception of OS-EM, which shows an AVG % bias ex-
ceeding 6% at iteration 128. One explanation for this increase in
error for OS-EM relative to the other algorithms is that OS-EM
exhibits a higher degree of acceleration than do RBI-EM or
RBI-SMART for the same iteration point.

For moderate count data (Table IV), we note that the RMS
% errors are all less than 4% for each algorithm, with the ex-
ception of OS-EM, which shows an error exceeding 17% for
iteration 128. Likewise, the AVG% bias is less than 4% for each
algorithm, with the exception of OS-EM, which shows an AVG
% bias exceeding 16% at iteration 128. Again, this is due to the

fact that OS-EM provides a greater degree of acceleration than
the other two algorithms for the same iteration point.

When the data are low count (Table V), we can see that the
RMS % error and AVG % bias all exhibit a marked increase, in
relation to the previous results. Although these errors are gen-
erally on the order of 6% or less for most iteration numbers,
we see that iterating too far yields significant errors and so the
approximate ensemble variance is not a good approximation to
the true ensemble variance, which we estimate using the sample
variance. We again note that OS-EM yields a much higher RMS
% error and AVG % bias for iteration 128 than do RBI-EM and
RBI-SMART, although the results for all three algorithms are
unacceptable.

Now, let us consider our findings when the count level is fixed
at 500 000 counts and the number of subsets increases. As pre-
viously mentioned, all of the results were computed for stop-
ping points 16, 32, 64, 128, 256, 512, and 1024 in the iterative
process. These will correspond to different full iterations, de-
pending on how many subsets are used. In the 4-subset case,
these points correspond to full iterations 4, 8, 16, 32, 64, 128,
and 256, respectively. For the 8-subset configuration, they cor-
respond to full iterations 2, 4, 8, 16, 32, 64, and 128, while in the
16-subset configuration, they correspond to full iterations 1, 2,
4, 8, 16, 32, and 64. This fact will be important when we com-
pare the estimation errors at the same stopping point.

In the 4-subset case (Table VI), the RMS % errors were all
less than 2% and the AVG % biases were all less than 1%, up
to and including iteration 64, for each algorithm. The same is
true for the 8-subset case (Table IV), with the exception of the
OS-EM algorithm at iteration 64, which yields an RMS % error
and AVG % bias of approximately 4%. When the data are par-
titioned into 16 subsets (Table VII), the RMS % errors were all
less than 5% and the AVG % biases were all less than 4%, up to
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Fig. 6. Central profiles through the ensemble variance (solid lines) and sample
variance (�) images of the disk object, for the RBI-EM (top), OS-EM (center),
and RBI-SMART (bottom) algorithms, as shown in Fig. 5.

and including iteration 64, for each algorithm. As the number of
subsets increases, faster acceleration is seen for each algorithm.

Fig. 7. Ensemble (top row) and sample (bottom row) local covariance images
of the disk object for the RBI-EM (left), OS-EM (center), and RBI-SMART
(right) algorithms. The ensemble and sample local covariance images were
generated for 16 full iterations of each algorithm. The projection data contained
500 000 total counts and were partitioned into 8 subsets.

This increase impacts the reconstructed image by increasing
noise variance, which subsequently violates the low-noise ap-
proximation. Thus, we would expect to see increased RMS %
errors and AVG % bias when the noise level is fixed and the
number of subsets increases.

3) Local Covariance Image: The results comparing the ap-
proximate ensemble and sample local covariance images are
shown in Figs. 7 and 8. In Fig. 7, we show images of the approx-
imate ensemble and sample local covariance for pixel (16,16),
for the three algorithms. The object considered was the uniform
disk with 500 000 total counts in the projection data, which were
partitioned into 8 subsets. The images correspond to full itera-
tion 16. Fig. 8 illustrates central profiles through the respective
images in Fig. 7.

Since the covariance matrix is of dimension 1024 1024, it
is impossible to display and analyze results for all other image
locations. The results presented herein are meant to give the
reader some perspective on the quality of the agreement that
might be seen between the approximate ensemble and sample
local covariance images, for a given pixel location.

Examining Figs. 7 and 8, we again qualitatively note the
excellent agreement between approximate ensemble and sample
local covariance images. As was the case for the mean and
variance images, such agreement is typical for low iterations
and moderate to high count levels. Again, deviations typically
occur when iteration increases or when the data are low-count.

C. MCAT Simulation

The results to illustrate the validity of the theoretical formu-
lation for a more complex object and realistic imaging scenario
are presented in Figs. 9–12. We compare the approximate en-
semble and sample means in Figs. 9 and 10, which show im-
ages and -axis profiles, respectively, of the approximate en-
semble mean and sample means for the three algorithms, while
Figs. 11 and 12 show images and -axis profiles, respectively,
through the approximate ensemble and sample variance images.
The projection data contained 500 000 total counts, which were
partitioned into 8 subsets. The images correspond to full itera-
tion 16.
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Fig. 8. Central profiles through the ensemble local covariance (solid lines) and
sample local covariance (�) images of the disk object, for the RBI-EM (top),
OS-EM (center), and RBI-SMART (bottom) algorithms, as shown in Fig. 7.

Considering Figs. 9–12, we see that the theory well-predicts
the true ensemble statistical parameters. Both high and low re-
gions of activity are accounted for when comparing approxi-
mate ensemble and sample means. In addition, high and low

Fig. 9. Ensemble mean (top row) and sample mean (bottom row) images of
the MCAT simulation for the RBI-EM (left), OS-EM (center), and RBI-SMART
(right) algorithms. Both ensemble and sample mean images were generated for
16 full iterations of each algorithm. The projection data contained 500 000 total
counts and were partitioned into 8 subsets.

regions of noise variance are accurately predicted, although the
reader will note slight discrepancies between the approximate
ensemble and sample variances in Fig. 12.

IV. DISCUSSION

We have attempted to fully validate the mathematical formu-
lations in Part I [1], which allow us to compute the ensemble
statistical properties of RBI reconstruction algorithms. In light
of the large amount of data generated in the many tables and
figures contained herein, we would like to highlight a few note-
worthy aspects of the results for the reader.

We have compared the approximate ensemble statistical pa-
rameters to their respective sample counterparts, using a uni-
form disk and MCAT simulation. In doing this, Monte Carlo
estimates were used to represent the true ensemble statistical
parameters. Typically, error bars quantifying the corresponding
confidence interval for a given parameter estimate would be in-
cluded. In this work, because such large sample sizes were used,
the corresponding confidence intervals for the Monte Carlo es-
timates were extremely small and, thus, if included in the ap-
propriate figure, would be visually imperceptible to the reader.
For example, in the mean image plot for RBI-EM (Fig. 4, top),
using the expression for the large-sample 95% confidence in-
terval [16] for pixel 15 with sample mean , sample standard
deviation and sample size , we get

(5)

which, if plotted, would be too small to be visually perceived by
the reader, given the scale of the -axis. For this reason, error
bars were not included for Monte Carlo plots in Figs. 4, 6, 8, 10
and 12.

In emission tomographic imaging, there are two sources of
randomness that we must attempt to quantify: 1) randomness
due to quantum noise for a fixed object, and 2) randomness due
to variability in the object itself. It is important to note that ob-
ject variability was not included in the analysis in Part I [1], and
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Fig. 10. Central profiles along the x-axis through the ensemble mean (solid
lines) and sample mean (�) images of the MCAT simulation, for the RBI-EM
(top), OS-EM (center), and RBI-SMART (bottom) algorithms, as shown in
Fig. 9.

so these validations also do not take object variation into ac-
count. However Abbey [17] provides an equivalent derivation

Fig. 11. Ensemble variance (top row) and sample variance (bottom row)
images of the MCAT simulation for the RBI-EM (left), OS-EM (center), and
RBI-SMART (right) algorithms. Both ensemble and sample variance images
were generated for 16 full iterations of each algorithm. The projection data
contained 500 000 total counts and were partitioned into 8 subsets.

of the ensemble statistical parameters for nonlinear iterative re-
construction operators, for which randomness due to quantum
noise and object variability are both included.

Part I of this paper [1] gives a detailed treatment of a theoret-
ical methodology to derive the approximate ensemble statistical
properties of RBI reconstructed images. Their formulation relies
on a low-noise approximation, which states that in order for the
theory to be valid, the noise in the reconstructed image must be
small compared to the mean image. Two obvious ways in which
the low-noise approximation can be violated is for the projec-
tion data to be low-count or to consider high iteration numbers.
In the former case, the relative signal-to-noise ratio is low and
so the noise may not be small compared with the mean, even
at the outset of the reconstruction process. In the latter case, as
iteration number increases, noise variance in the reconstructed
image tends to increase and, thus, the noise is not small com-
pared with the mean.

In this work, we have attempted to confirm the predictions
of the theory as elucidated in [1] Overall, we have shown the
approximate ensemble statistical properties to agree well with
their respective large sample estimates for a wide variety of
noise levels and subset orderings, for each of the three algo-
rithms. It was also demonstrated that the theoretical formula-
tion breaks down when the low-noise approximation is violated,
i.e. with low-count data or when iterating too far. However,
there is some evidence that in certain low-count scenarios, the
methodology might be useful for approximating the ensemble
statistical properties of the three algorithms. The breakdown of
the methodology is most apparent for large iteration numbers,
which in practice, would not be used.

V. CONCLUSION

In this paper, we evaluated a methodology that predicts
the ensemble statistical properties of the RBI-EM reconstruc-
tion algorithm, OS-EM, and RBI-SMART. This evaluation
was accomplished using Monte Carlo methods to calculate
the sample statistical properties of each algorithm and then
comparing the results with the aforementioned theoretical for-
mulations. We also investigated the validity of the methodology,
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Fig. 12. Central profiles along the x-axis through the ensemble variance
(solid lines) and sample variance (�) images of the MCAT simulation, for the
RBI-EM (top), OS-EM (center), and RBI-SMART (bottom) algorithms, as
shown in Fig. 11.

which depends upon a low-noise approximation. We found
that the methodology works quite well for a variety of noise
levels, subset configurations and iteration points. However, the

methodology breaks down in low-count situations and for large
numbers of iterations. Thus, the theoretical methodology can
be used to derive the ensemble statistical parameters for RBI
reconstructed images, which in turn could be used for objective
image quality assessment.
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