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ABSTRACT. Intraguild predation occurs when one species (the intraguild predator) pre-
dates on and competes with another species (the intraguild prey). A classic model of this
interaction was introduced by Gary Polis and Robert Holt building on a model of com-
peting species by Thomas Schoener. A global analysis reveals that this model exhibits
generically six dynamics: extinction of one or both species; coexistence about a globally
stable equilibrium; contingent exclusion in which the first established species prevents the
establishment of the other species; contingent coexistence in which coexistence or dis-
placement of the intraguild prey depend on initial conditions; exclusion of the intraguild
prey; and exclusion of the intraguild predator. Implications for biological control and com-
munity ecology are discussed.

1. Introduction. Intraguild predation occurs when one species (the intraguild predator)
preys on and competes for limiting resources with another species (the intraguild prey).
This mixture of predation and competition is observed in a diversity of freshwater, marine,
and terrestrial food webs [2, 3]. For example, in freshwater streams, bluegills and insects
compete for plankton, and bluegills prey on insects. In deserts, spiders and scorpions
compete for insects and prey on one another. In [3, 2], which coined the phrase “intraguild
predation,” Gary Polis and Robert Holt modeled intraguild predation by modifying a model
of competition by Thomas Schoener [5]. If N1 is the density of the intraguild prey and N2
is the density of the intraguild predator, then this model is given by

dN1

dt
= a1b1R(N1,N2)N1−αN1N2− c1N1 =: F1(N1,N2) (1)

dN2

dt
= a2b2R(N1,N2)N2 +αβN1N2− c2N2 =: F2(N1,N2)

R(N1,N2) =
S

a1N1 +a2N2

where ai > 0 is the rate at which a species finds the resource, b1 > 0 (respectively b2) is the
efficiency at which the intraguild prey (resp. intraguild predator) convert the basal resource
into intraguild prey (resp. intraguild predators), ci > 0 is the per-capita death rate, α > 0
is the rate at which the intraguild predator encounters the intraguild prey, β > 0 is the ef-
ficiency at which the consumed intraguild prey is converted into intraguild predators, and
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S > 0 is the rate at which the resource enters the system. In the absence of intraguild pre-
dation (i.e., α = β = 0), Schoener [5] showed that (generically) one species competitively
excluded the other. Holt and Polis [1, 3] illustrated that the inclusion of intraguild preda-
tion (i.e., α > 0 and β > 0) could mediate coexistence between the two species, reverse
competitive dominance, and generate alternative stable states. In this article, we provide a
complete mathematical analysis of a generalization of this model.

An unfortunate feature of the original Schoener model is that the “resource function”
R(N1,N2) = S

a1N1+a2N2
is not defined at the origin. A modified version of this resource func-

tion was presented by Schoener in 1978 and is given by R(N1,N2) = S
γ+a1N1+a2N2

where γ
is the natural “decay rate” of the resource [6]. This resource function has a simple mecha-
nistic interpretation, as it corresponds to the quasi steady state of the equation

dR
dt

= S− γR−a1RN1−a2RN2.

In this article, we study the dynamics of

dN1

dt
= a1b1R(N1,N2)N1−αN1N2− c1N1 =: F1(N1,N2) (2)

dN2

dt
= a2b2R(N1,N2)N2 +αβN1N2− c2N2 =: F2(N1,N2)

R(N1,N2) =
S

γ+a1N1 +a2N2

under the assumption that γ > 0. The remainder of the article is structured as follows. In
section 2, we state and illustrate our main results. In sections 3 and 4, we prove our main
results. In section 5, we discuss the implications of these results for biological control and
the structure of ecological communities.

2. Main results. To ensure that (2) has solutions defined for all forward time, we be-
gin with a proposition that ensures that all solutions to (2) enter a compact subset of the
nonnegative quadrant.

PROPOSITION 2.1. Let (N1(t),N2(t)) be a solution to (2) with Ni(0)≥ 0 for i = 1,2. Then

limsup
t→∞

βN1(t)+N2(t)≤ S(b1β+b2)
min{c1,c2} .

Proof. Let (N1(t),N2(t)) be a solution to (2) with Ni(0) ≥ 0 for i = 1,2. Define Q(t) =
βN1(t)+N2(t). Since

S(a1b1βN1 +a2b2N2)
γ+a1N1 +a2N2

≤ S(a1b1βN1)
a1N1

+
S(a2b2N2)

a2N2
≤ S(b1β+b2)

we get

dQ
dt

= R(N1,N2)(a1b1βN1 +a2b2N2)− c1βN1− c2N2

≤ S(b1β+b2)−δ(βN1 +N2)
≤ S(b1β+b2)−δQ

where δ = min{c1,c2}. It follows that limsupt→∞ Q(t)≤ S(b1β+b2)
δ .
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Equation (2) always has the equilibrium (0,0). The per-capita growth rate of species i at
(0,0) is aibiS

γ − ci. When aibiS
γ − ci > 0, there is a positive equilibrium on the Ni axis given

by Ni = biS
ci
− γ

ai
at which the resource level is R = ci

aibi
. The missing species can invade

at these boundary equilibria if its per-capita growth rate at this equilibrium is positive.
The per-capita growth rate of the intraguild prey at the intraguild predator equilibrium
(0, b2S

c2
− γ

a2
) is given by

Γ1 =
c2

2b1 a1− c1 b2 a2 c2−αb2
2Sa2 +αb2 c2 γ

b2 a2 c2
.

The per-capita growth rate of the intraguild predator at the intraguild prey equilibrium
( b1S

c1
− γ

a1
,0) is given by

Γ2 =
c2

1b2 a2− c2 b1 a1 c1 +βαb2
1Sa1−βαb1 c1 γ

b1 a1 c1
.

The following theorem characterizes the behaviors of (2) when both species can invade
the origin. The conclusions of this theorem are illustrated in Fig. 1. The proof is given in
section 3.

THEOREM 2.1. Assume aibiS
γ > ci, ai > 0, bi > 0, ci > 0, for i =1,2, α ≥ 0; β ≥ 0; and

γ > 0. Define Γi for i = 1,2 as above, and define

A1 = −c1a2b2β−a1c2b2 +2a1b1c2β+αβγb2

A2 = 2c1a2b2− c1a2b1β−b1αβγ−a1b1c2

B1 = 4a1βa2b2c2Γ1(−b2 +b1β).

Then (2) exhibits five types of dynamics:
1. Global coexistence. If Γ1 > 0 and Γ2 > 0, then there exists a unique equilibrium

(N̂1, N̂2) in the positive quadrant, and limt→∞(N1(t),N2(t)) = (N̂1, N̂2) for every so-
lution satisfying N1(0) > 0 and N2(0) > 0.

2. Contingent exclusion. If Γ1 < 0 and Γ2 < 0 then there exists a unique equilibrium
(N̂1, N̂2) in the positive quadrant with a one dimensional stable manifold S that sep-
arates the positive orthant into two connected components. For every solution with
(N1(0),N2(0)) lying below S, we have that limt→∞(N1(t),N2(t)) = ( b1S

c1
− γ

a1
,0). For

every solution with (N1(0),N2(0)) lying above S, we have that limt→∞(N1(t),N2(t))=
(0, b2S

c2
− γ

a2
).

3. Intraguild predator displacement. If Γ1 > 0 and Γ2 < 0, then limt→∞(N1(t),N2(t))=
( b1S

c1
− γ

a1
,0) for every solution with N1(0) > 0 and N2(0)≥ 0.

4. Intraguild prey displacement. If Γ1 < 0 and Γ2 > 0, and either b2 ≤ b1β or A1 > 0
or A2 > 0 or A2

1 < B1, then limt→∞(N1(t),N2(t)) = (0, b2S
c2
− γ

a2
) for every solution

with N1(0)≥ 0 and N2(0) > 0.
5. Contingent coexistence. If Γ1 < 0 , Γ2 > 0, b2 > b1β, Ai < 0 for i = 1,2, and A2

1 >
B1, then there exist two positive equilibria (N+

1 ,N+
2 ) and (N−

1 ,N−
2 ) with N−

2 < N+
2 .

(N+
1 ,N+

2 ) is a saddle with a one-dimensional stable manifold S that separates the
positive orthant into an upper and lower region. Moreover, limt→∞(N1(t),N2(t)) =
(N−

1 ,N−
2 ) for every solution with (N1(0),N2(0)) > (0,0) lying below S, and

limt→∞(N1(t),N2(t)) = (0, b2S
c2
− γ

a2
) for every solution with (N1(0),N2(0)) > (0,0)

lying above S.

The following proposition characterizes the behavior of (2) when one of the species can
not invade the origin. The proof is given in section 4.
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FIGURE 1. The phase portraits in the N1–N2 plane corresponding to the
conclusions of Theorem 2.1. Solutions (in blue) are plotted along with
the nullclines (in red/yellow). In the case of bistability and contingent
coexistence, the separatrix of the positive saddle is shown in green.

PROPOSITION 2.2. Define Γ2 as above.

1. Intraguild prey failure. If a1b1S
γ < c1, then limt→∞ N1(t) = 0 for any solution

(N1(t),N2(t)) of (2) with N1(0)≥ 0 and N2(0)≥ 0.
2. Intraguild predator failure. If a2b2S

γ < c2 and either a1b1S
γ < c1 or a1b1S

γ > c2 with
Γ2 < 0, then limt→∞ N2(t) = 0 for any solution (N1(t),N2(t)) of (2) with N1(0) ≥ 0
and N2(0)≥ 0.

3. Global coexistence. If a2b2S
γ < c2, a1b1S

γ > c1 and Γ2 > 0, then there exists a unique

equilibrium (N̂1, N̂2) in the positive quadrant, and limt→∞(N1(t),N2(t)) = (N̂1, N̂2)
for every solution satisfying N1(0) > 0 and N2(0) > 0.
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3. Proof of Theorem 2.1. Assume that aibiS
γ > ci for i = 1,2. We begin by proving that

there are no periodic solutions or heteroclinic loops in the positive quadrant for (2). Recall
that the Dulac criterion states that if there exists a positive continuously differentiable real-
valued function Ψ(N1,N2) on the positive quadrant such that ∂ΨF1

∂N1
+ ∂ΨF2

∂N2
< 0 in the posi-

tive quadrant, then there are no closed orbits or heteroclinic loops in the positive quadrant.
Choosing Ψ(N1,N2) = 1

N1N2
yields the desired result. Since (as we shall shortly prove)

equation (2) generically has only a finite number of equilibria, Poincaré-Bendixson the-
ory implies that generically every solution (N1(t),N2(t)) of (2) with Ni(0)≥ 0 for i = 1,2
converges to an equilibrium.

N1

N2

N1

N2

Intraguild predator nullcine Intraguild prey nullcline

FIGURE 2. Non-trivial nullclines for (2)

To understand the equilibria of (2), we examine the nullclines. The equations, dNi
dt = 0,

have a pair of solutions. For each species, one of its nullclines exists on the opposing axis.
For example, one nullcline for the prey is the N2 axis . The nontrivial nullcline for the
intraguild predator is the curve

N2 =
b2S

c2−αβN1
− γ

a2
− a1

a2
N1. (3)

This intraguild predator nullcline is a hyperbola with a vertical asymptote at N2 = c2
αβ

and an oblique asymptote along the line N2 = − γ
a2
− a1

a2
N1. Since b2S

c2
− γ

a2
> 0, the N2

intercept of this nullcline is positive. Consequently, the graph of (3) does not intersect the
negative quadrant (see Figure 2), and no equilibria can reside in this quadrant. Similarly,
the nontrivial intraguild prey nullcline is the curve

N1 =
b1S

c1 +αN2
− γ

a1
− a2

a1
N2. (4)

This intraguild prey nullcline has the same oblique asymptote N2 = − γ
a2
− a1

a2
N1 as the

oblique asymptote of (3). It also has a horizonal asymptote at N2 = − c1
α . Moreover, both

components of this intraguild prey nullcline are strictly decreasing as functions of N1 (see
Figure 2).

In addition to the three equilibria on the axes, we can solve the nontrivial nullcline equa-
tions (3) and (4) for N1 and N2. If b2 6= b1β, then this yields the two additional possibilities
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for equilibria

(N+
1 ,N+

2 ) =


A1−

√
A2

1−B1

C1
,

A2 +
√

A2
2−B2

C2




(N−
1 ,N−

2 ) =


A1 +

√
A2

1−B1

C1
,

A2−
√

A2
2−B2

C2




where

A1 = −c1a2b2β−a1c2b2 +2a1b1c2β+αβγb2

A2 = 2c1a2b2− c1a2b1β−b1αβγ−a1b1c2

B1 = 4a1βa2b2c2Γ1(−b2 +b1β)
B2 = 4a1b1c1a2Γ2(b2−b1β)
C1 = 2a1αβ(−b2 +b1β)
C2 = 2a2α(−b2 +b1β).

We will use the fact that

A2
i −Bi = b2

j
(
D2 +4a1a2Sβα(−b2 +b1β)

)
where D = γαβ− c1 βa2 +a1 c2 (5)

for i, j = 1,2 with i 6= j. Alternatively, when b2 = b1β and Ai 6= 0 for i = 1,2, solving (3)
and (4) yields

(N∗
1 ,N∗

2 ) =
(

a2b2c2Γ1

αA1
,−a1b1c1Γ2

αA2

)
.

Since A2 =−A1/β when b2 = b1β, we have

(N∗
1 ,N∗

2 ) =
(

a2b2c2Γ1

αA1
,

a1b1c1βΓ2

αA1

)
. (6)

Finally if b2 = b1β and Ai = 0 for i = 1 or 2, there is no solution to (3) and (4).
Let (N̂1, N̂2) be an equilibrium with N̂1 > 0 and N̂2 > 0. This can occur only if α > 0

and β > 0. Linearizing the right-hand side of (2) about (N̂1, N̂2) yields

J =


 − N̂1a2

1b1S
(γ+a1N̂1+a2N̂2)2 − N̂1a1a2b1S

(γ+a1N̂1+a2N̂2)2 −αN̂1

− N̂2a1a2b2S
(γ+a1N̂1+a2N̂2)2 +αβN̂2 − N̂2a2

2b2S
(γ+a1N̂1+a2N̂2)2


 .

The trace of J is negative. Moreover, we claim that detJ = 0 if and only if A2
i = Bi and

b2 6= b1β. Indeed, the determinant of J is given by

detJ = αN̂1N̂2

(
a1a2S(−b2 +b1β)

(γ+a1N̂1 +a2N̂2)2
+αβ

)
.

If b2 = b1β, then detJ = α2βN̂1N̂2 6= 0 as α > 0,β > 0, and N̂i > 0 for i = 1,2. Alternatively,
assume b2 6= b1β. Let ε = (A2

1−B1)/b2
2. Substituting the expressions (N±

1 ,N±
2 ) for (N̂1, N̂2)

yields
1

γ+a1N̂1 +a2N̂2
=

2αβ
D±√ε

.
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Substituting the preceding equation into detJ yields

detJ = α2βN̂1N̂2

(
4αβa1a2S(−b2 +b1β)

2ε±2D
√

ε−4αβa1a2S(−b2 +b1β)
+1

)
.

Hence, detJ = 0 if and only if ε = 0, equivalently, if and only if A2
1 = B1. These observa-

tions imply that so long as A2
i 6= Bi or b2 = βb1, any equilibrium in the positive quadrant is

either a sink (i.e., eigenvalues of J have negative real parts) or a saddle (i.e., J has a positive
and negative eigenvalue).

Case 1 - Global coexistence. Assume Γi > 0 for i = 1,2. We claim that there is a
unique equilibrium in the positive quadrant. To prove this claim and identify the correct
expression of this positive equilibrium, we need to consider three cases. For the first case,
assume that b1β > b2. Then, C1 > 0 and C2 > 0. Moreover, Γi > 0 and b1β > b2 imply that

B1 > 0, and B2 < 0. Hence, N−
2 < 0 < N+

2 . Since A2
1 > A2

1−B1 = b2
1

b2
2
(A2

2−B2) > 0 (cf. (5)),

N−
1 and N+

1 must be real and have the same sign. Moreover, as there are no equilibria in
the negative quadrant, N−

1 and N+
1 are positive. Hence, (N̂1, N̂2) = (N+

1 ,N+
2 ) is the unique

equilibrium in the positive quadrant. For the second case, assume that b1β < b2. Then,
C1 < 0 and C2 < 0. Moreover, Γi > 0 and b1β < b2 imply that B1 < 0, and B2 > 0. Hence,

N−
1 < 0 < N+

1 . Since A2
2 > A2

2−B2 = b2
2

b2
1
(A2

1−B1) > 0 (cf. (5)), N−
2 and N+

1 are real and

have the same sign. Moreover, as there are no equilibria in the negative quadrant, N−
2 and

N+
2 are positive. Hence, (N̂1, N̂2) = (N+

1 ,N+
2 ) is the unique equilibrium in the positive

quadrant. For the third case, assume that b1β = b2. In this case the only equilibrium is
given by (N∗

1 ,N∗
2 ). Since Γi > 0 for i = 1,2 and there are no equilibria in the negative

quadrant, equation (6) implies that (N∗
1 ,N∗

2 ) must lie in the positive quadrant.
Let (N̂1, N̂2) denote the unique equilibrium in the positive quadrant. Since we have

either b2 6= b1β or A2
1 −B1 6= 0 at this equilibrium, the equilibrium is either a sink or a

saddle. Since the equilibria on the axes are a source (the origin) and two saddles and all
solutions starting in the positive quadrant must converge to an equilibrium, the Poincaré-
Bendixson theory implies that all solutions starting in the positive quadrant must converge
to (N̂1, N̂2).

Case 2: Contingent exclusion. Assume that Γ1 < 0 and Γ2 < 0. We claim that there is
a unique equilibrium in the positive quadrant. To prove this claim and identify the correct
expression of this positive equilibrium, we need to consider three cases. For the first case,
assume that b1β > b2. Then, C1 > 0 and C2 > 0. Moreover, Γi < 0 and b1β > b2 imply that
B1 < 0, and B2 > 0. Hence, N−

1 > 0 > N+
1 . As N+

2 and N−
2 have the same sign and there are

no equilibria in the negative quadrant, (N̂1, N̂2) = (N−
1 ,N−

2 ) is the unique equilibrium in the
positive quadrant. For the second case, assume that b1β < b2. Then, C1 < 0 and C2 < 0.
Moreover, Γi < 0 and b1β < b2 imply that B1 > 0 and B2 < 0. Hence, N−

2 > 0 > N+
2 .

As N+
1 and N−

1 have the same sign and there are no equilibria in the negative quadrant,
(N̂1, N̂2) = (N−

1 ,N−
2 ) is the unique equilibrium in the positive quadrant. For the third case,

assume that b1β = b2. In this case the only equilibrium is given by (N∗
1 ,N∗

2 ). Since Γi < 0
for i = 1,2 and there are no equilibria in the negative quadrant, equation (6) implies that
(N∗

1 ,N∗
2 ) must lie in the positive quadrant.

Let (N̂1, N̂2) denote the unique equilibrium in the positive quadrant. Since we have
either b2 6= b1β or A2

1−B1 6= 0 at this equilibrium, this equilibrium is either a sink or a
saddle. However, since ( b1S

c1
− γ

a1
,0) and (0, b2S

c2
− γ

a2
) are sinks and the origin is a source,



286 E. RUGGIERI AND S. J. SCHREIBER

(N̂1, N̂2) must be a saddle. Moreover, the stable manifold of (N̂1, N̂2) separates the basins
of attraction of ( b1S

c1
− γ

a1
,0) and (0, b2S

c2
− γ

a2
).

Case 3: Intraguild predator displacement. Assume that Γ1 > 0 and Γ2 < 0. Since
Γ2 < 0, the intraguild predator nullcline given by (3) must lie below the N1 axis at N1 =
a1b1S

γ − c1 and have a vertical asymptote at N1 > a1b1S
γ − c1. Since the prey nullcline given

by (4) is decreasing and passes through the point ( b1S
c1
− γ

a1
,0) and the predator nullcline

has a vertical asymptote at N1 > b1S
c1
− γ

a1
, these nullclines must intersect at an equilibrium

(N̂1, N̂2) with N̂1 > 0 and N̂2 < 0. Using this observation, we claim there are no equilibria
in the positive quadrant. To prove this claim, we consider three cases. First, assume that
b1β > b2. Then, B1 > 0 and B2 > 0. Hence, when A2

i −Bi ≥ 0 (i.e., the equilibria are
real), N±

1 have the same sign and N±
2 have the same sign. Our observation about (N̂1, N̂2)

implies that N±
1 > 0 and N±

2 < 0. Hence, there are no equilibria in the positive quadrant.
Second, assume that b1β < b2. Since Ci < 0 and Bi < 0 for i = 1,2 in this case, we
get N−

1 < 0 < N+
1 and N+

2 < 0 < N−
2 . Hence, neither (N−

1 ,N−
2 ) nor (N+

1 ,N+
2 ) lie in the

nonnegative quadrant. Third, assume that b1β = b2. Then, (N∗
1 ,N∗

2 ) must equal (N̂1, N̂2)
and there is no equilibrium in the positive quadrant.

Since ( b1S
c1
− γ

a1
,0) is a sink, (0, b2S

c2
− γ

a2
) is a saddle, and there are no equilibria in the

positive quadrant, the Poincaré-Bendixson theory implies that all solutions in the positive
quadrant converge to ( b1S

c1
− γ

a1
,0).

Cases 4 and 5: Intraguild prey displacement and contingent coexistence. Assume that
Γ1 < 0 and Γ2 > 0. First, consider the case that b1β < b2. Then Bi > 0 and Ci < 0 for
i = 1,2. Thus, if A2

1−B1 > 0 and Ai < 0 for i = 1,2, then the two equilibria (N+
1 ,N+

2 ) and
(N−

1 ,N−
2 ) lie in the positive quadrant. Alternatively, if A2

1−B1 < 0 or A1 > 0 or A2 > 0, then
there are no equilibria in the positive quadrant. Second, consider the case that b1β > b2.
Then Ci > 0 and Bi < 0 for i = 1,2. Hence, N+

2 > 0 > N−
2 and N−

1 > 0 > N+
1 . Therefore,

there are no equilibria in the positive quadrant. Third, consider the case that b1β = b2.
Since Γ1Γ2 < 0, equation (6) implies that N∗

1 and N∗
2 are of opposite sign. Therefore, there

are no equilibria in the positive quadrant.
Assume that there are no equilibria in the positive quadrant (i.e., b1β ≥ b2 or A2

1 < B1

or A1 > 0 or A2 > 0). Since ( b1S
c1
− γ

a1
,0) is a saddle and (0, b2S

c2
− γ

a2
) is a sink, all solutions

in the positive quadrant converge to (0, b2S
c2
− γ

a2
). Alternatively assume that there are two

positive equilibria (N±
1 ,N±

2 ) in the positive quadrant (i.e., b1β < b2, A2
1 > B1, and Ai < 0

for i = 1,2). Since A2
1 > B1, these equilibria are either sinks or saddles. By the Poincaré-

Hopf Index theorem, one of the positive equilibria is a sink and the other is a saddle. The
stable manifold of this saddle must separate the basins of attraction of the boundary sink
and the sink in the positive quadrant.

4. Proof of Proposition 2.2. Case 1: Intraguild prey failure. Suppose that a1b1S
γ < c1.

Then, dN1
dt

1
N1
≤ a1b1S

γ − c1 < 0 for N1 > 0 and N2 ≥ 0. Hence, limt→∞ N1(t) = 0 for any
solution (N1(t),N2(t)) to (2) with N1(0)≥ 0 and N2(0)≥ 0.

Case 2: Intraguild predator failure. Suppose that a2b2S
γ < c2 and a1b1S

γ < c1. Let
(N1(t),N2(t)) be a solution to (2) with N1(0)≥ 0 and N2(0) > 0. Then, limt→∞ N1(t) = 0.
Since a2b2S

γ < c2, there exists a T > 0 such that

N2
′(t)

N2(t)
≤ a2b2S

γ
− c2 +αβN1(t) < 0
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for all t ≥ T . Hence, limt→∞ N2(t) = 0.
Suppose that a2b2S

γ < c2, a1b1S
γ > c1, and Γ2 < 0. Then, the intraguild predator nullcline

(3) lies below the N1 axis for 0 ≤ N1 ≤ b1S
c1
− γ

a1
. Since the intraguild prey nullcline (4)

lies below the N1 axis for N1 > b1S
c1
− γ

a1
, there is no equilibrium in the positive quadrant.

Since the origin is a saddle and ( b1S
c1
− γ

a1
,0) is a sink, the Poincaré-Bendixson theorem

implies that limt→∞(N1(t),N2(t)) = ( b1S
c1
− γ

a1
,0) for any solution (N1(t),N2(t)) to (2) with

N1(0) > 0 and N2(0)≥ 0.
Case 3: Global coexistence. Suppose that a2b2S

γ < c2, a1b1S
γ > c1, and Γ2 > 0. Then,

the intraguild predator nullcline (3) has a negative N2 intercept; has an N1 intercept, call
it N∗

1 , in the interval 0 < N1 < b1S
c1
− γ

a1
; is increasing on the interval N∗

1 < N1 < c2
αβ ; and

has a vertical asymptote at N1 = c2
αβ . Since the intraguild prey nullcline (4) is decreasing

and positive on the interval 0≤ N1 < b1S
c1
− γ

a1
and has a N1 intercept at b1S

c1
− γ

a1
, there is a

unique intersection (N̂1, N̂2) of these nullclines in the positive quadrant. Since there are no
periodic orbits in the positive quadrant (cf. the first paragraph of the proof of Theorem 2.1)
and the origin and ( b1S

c1
− γ

a1
,0) are saddles, the Poincaré-Bendixson theorem implies that

limt→∞(N1(t),N2(t)) = (N̂1, N̂2) for any solution (N1(t),N2(t)) to (2) with N1(0) > 0 and
N2(0) > 0.

5. Discussion. Competition and predation are two fundamental processes in ecological
communities that have been studied extensively. Intraguild predation combines these two
processes in a unique way: species that compete for common resources also predate on one
another. In this article, we analyzed a variation of an intraguild predation model introduced
by Polis and Holt [1, 3], which builds on Schoener’s model of competing species [5, 6].
Our analysis reveals that there are generically six types of dynamics: extinction of one
or both species; coexistence about a globally stable equilibrium; competitive exclusion of
the intraguild predator; competitive exclusion of the intraguild prey; contingent exclusion
in which the first established species prevents the establishment of the other species; and
contingent coexistence in which the species coexist or the intraguild prey is displaced,
depending on initial conditions.

As observed by Polis and Holt [2], this model of intraguild predation has important im-
plications for classical biological control where a pest species (in our case, the “resource”)
is regulated by natural enemies (in our case, the intraguild prey or predator). For exam-
ple, many agricultural pests, such as lepidoptera or hymenoptera (“the resource species”),
are attacked by parasitic wasps and predatory insects. Since these predatory insects also
attack pests that contain wasp larvae [4], the predators are intraguild predators, and the
wasps are their intraguild prey. The relevance of our analysis to biocontrol stems from the
observation that the equilibrium pest abundance equals

R(N̂1, N̂2) =
c1

a1b1
−αN̂1 (7)

at any equilibrium (N̂1, N̂2) supporting the intraguild prey and predator. Hence, the pest
equilibrium

R
(

b1S
c1

− γ
a1

,0
)

=
c1

a1b1

determined by the intraguild prey is smaller than the pest abundance R(N̂1, N̂2) determined
by an equilibrium supporting both species. Thus, intraguild predators coexisting with in-
traguild prey may disrupt biological control by raising the equilibrium abundance of the
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pest. However, this prediction needs to be viewed with caution, as this model does not
account for the potentially stabilizing effects of intraguild predation with a dynamic pest
species [7].

Our analysis also has various implications for how intraguild predation impacts commu-
nity structure. Most interestingly, intraguild predation can result in alternative stable states
in which community composition depends on the order of species arrivals. In the case of
contingent exclusion, the species that arrives first exclusively determines the community
composition. Alternatively, in the case of contingent coexistence, there exist alternative
states with different levels of species richness. If the intraguild predator arrives first, it pre-
vents the establishment of the intraguild prey. However, if the intraguild prey arrives first,
the community can be augmented with the intraguild predator. Our analysis also makes
predictions about the effect of environmental productivity on community structure. As-
sume the intraguild prey can suppress the resource to a lower equilibrium abundance (i.e.,

c1
a1b1

< c2
a2b2

). Then at low productivity (i.e., S just large enough to support both species),
the intraguild prey displaces the intraguild prey (i.e., Γ1 > 0 and Γ2 < 0). Alternatively,
at high levels of productivity (i.e. S sufficiently large), a reversal occurs in which the in-
traguild predator exerts sufficient predatory pressure to displace the intraguild prey (i.e.,
Γ1 < 0, Γ2 > 0, and either b2 ≤ b1β or B1 > A2

1). Thus, only at intermediate levels of
productivity are alternative states or coexistence possible.

In conclusion, simple models of intraguild predation exhibit a diversity of behaviors that
have noteworthy ecological ramifications. While providing an illuminating starting point,
the biological complexities of the real world require us to understand how stage-structure,
nonlinear functional responses, spatial heterogeneity, additional species interactions and
environmental stochasticity interact with intraguild predation to modulate the effects ob-
served in these simple models.
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