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a b s t r a c t

We describe an efficient, exact Bayesian algorithm applicable to both variable selection
and model averaging problems. A fully Bayesian approach provides a more complete
characterization of the posterior ensemble of possible sub-models, but presents a
computational challenge as the number of candidate variables increases. While several
approximation techniques have been developed to deal with problems that contain a
large numbers of candidate variables, including BMA, IBMA, MCMC and Gibbs Sampling
approaches, here we focus on improving the time complexity of exact inference using a
recursive algorithm (Exact Bayesian Inference in Regression, or EBIR) that uses components
of one sub-model to rapidly generate another and prove that its time complexity is O(m2),
where m is the number candidate variables. Testing against simulated data shows that
EBIR significantly reduces compute time without sacrificing accuracy, while comparisons
to the results obtained by MCMC approaches on the Crime and Punishment data set show
that model averaging yields improved predictive performance over two model selection
approaches. In addition, we show that finite mixtures of centroid solutions provide a
means to better characterize the shape of multimodal posterior spaces than any individual
model. Finally, we describe how the BIC approximations employed in the BMA and IBMA
algorithms can be replaced by an EBIR calculation of equal time complexity and illustrate
the departure of the BIC approximation from the exact Bayesian inference of EBIR.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction: a Bayesian approach to variable selection

Given an unknown dependent variable, y, and m known predictor variables x1, . . . , xm, linear regression methods are
based upon the statistical model

y =

m
j=1

βjxj + ε

where βj is the jth regression coefficient and ε is a random error term. When a large number of predictors are available,
interest often focuses on the selection of a subset of these variables.

The number of possible sub-models grows exponentially with the number of predictors, thus traditional methods of
variable selection quickly become intractable for high dimensional data. In ultra-high dimensional problems, such as those
encountered in genomics (for example, gene expression or GenomeWide Association Studies), a screening procedure aimed

∗ Corresponding author. Tel.: +1 412 396 4851; fax: +1 412 396 1937.
E-mail addresses: ruggierie@duq.edu (E. Ruggieri), Charles_Lawrence@brown.edu (C.E. Lawrence).

1 Tel.: +1 401 863 1479; fax: +1 401 863 1355.

0167-9473/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2011.09.026

http://dx.doi.org/10.1016/j.csda.2011.09.026
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:ruggierie@duq.edu
mailto:Charles_Lawrence@brown.edu
http://dx.doi.org/10.1016/j.csda.2011.09.026


1320 E. Ruggieri, C.E. Lawrence / Computational Statistics and Data Analysis 56 (2012) 1319–1332

at dimensional reduction is first implemented to remove many of the predictors from further consideration. For example,
the Sure Independent Screening (SIS) procedure (Fan and Lv, 2008) uses the correlation of predictors to the dependent
variable to screen, while the greedy Forward Regression algorithm of Wang (2009) uses the traditional forward stepwise
regression method combined with the BIC criterion of Chen and Chen (2008) to scan a high dimensional space. Typically
these screening procedures are employed to reduce the number of predictors down to a point wheremore rigorous variable
selection techniques such as SCAD (Fan and Li, 2001), Lasso (Tibshirani, 1996), Adaptive Lasso (Zou, 2006; Zhang and Lu,
2007) or Bayesian approaches such as BMA (Raftery, 1995) and the Bayesian Lasso (Park and Casella, 2008; Hans, 2009,
2010) become feasible, especially for the case where the number of predictors exceeds the number of observations (Wang,
2009; Fan and Lv, 2008). Here we focus on Bayesian inference from the posterior space across the ensemble of candidate
sub-models. To this end we describe an exact Bayesian algorithm with improved computational efficiency.

In the frequentist setting, common approaches to finding ‘good’ sets of predictors involvesminimizing the sumof squared
errors subject to some constraint or selection criteria, such as AIC, BIC or Cp. Examples include greedy forward and backward
eliminations (Miller, 2002, and references therein) and the Leaps and Bounds technique (Furnival and Wilson, 1974). A
number of penalized regression approaches have been developed including the nonnegative garrote (Breiman, 1995;Miller,
2002), Ridge Regression (Hoerl and Kennard, 1970a,b), which seeks to minimize squared error together with the square of
the regression coefficients, the Lasso technique, which minimizes squared error together with a constraint on the sum of
the absolute values of the coefficients (Tibshirani, 1996), and SCAD (Fan and Li, 2001), which is similar to the Lasso but uses
a smoothly clipped absolute deviation penalty. Least Angle Regression (LARS) (Efron et al., 2004) is a less greedy version of
traditional forward selection that with a slight modification can be transformed into the Lasso. In the Adaptive Lasso (Zou,
2006; Zhang and Lu, 2007), adaptive weights are used to penalize different coefficients. Additionally, Zou and Hastie (2005)
developed the elastic net, which is a combination of Ridge Regression and the Lasso technique.

Whereas frequentist approaches look for the ‘optimal’ set of variables, a Bayesian approach to variable selection focuses
on finding the posterior distribution across the ensemble of candidate sub-models. The Bayesian Model Averaging (BMA)
algorithm introduced by Raftery (1995) can be viewed as a semi-Bayesian approach to selecting a specific subset of variables.
BMA uses the branch and bound technique known as Leaps and Bounds (Furnival and Wilson, 1974) to initially screen the
solution space. To expedite this process, Leaps and Bounds utilizes an efficient ‘matrix sweep’ procedure and stores partial
results from this step for later use in BMA’s evaluation step. The posterior probability of each sub-model that survives the
screening process is approximated by and then ranked using the Bayesian Information Criteria (BIC). The space is further
truncated by removing any sub-model that does not exceed an arbitrary bound, typically 1/20th of the maximal probability
for a sub-model. Iterative BMA (IBMA) (Yeung et al., 2005) was developed in the context of problems where the number of
predictors greatly exceeds the number of observations, specifically microarray data. IBMA first ranks variables in order of
their individual predictive ability and then successively applies the BMA algorithm to groups of the ordered variables in an
attempt to screen out unimportant sets of predictors.

In a Bayesian approach, Mitchell and Beauchamp (1988) found maximum a posteriori (MAP) estimates through an
exhaustive search because of the small number of regression terms under consideration; Branch and Bound methods (Land
and Doig, 1960; Mitchell and Beauchamp, 1986) were suggested for larger sets of regression terms. As Fernandez et al.
(2001b) points out, the ‘largest computational burden lies in the evaluation of the marginal likelihood of each model’.
Therefore, the ability to make these calculations efficiently is of the utmost importance. Bayesian algorithms that go beyond
identification of themode in high-dimensional spaces include the Bayesian Lasso (Park and Casella, 2008; Hans, 2009, 2010),
Markov Chain Monte Carlo (MCMC) approaches (Madigan and York, 1995; Smith and Kohn, 1996; Raftery et al., 1997;
Hoeting et al., 1997; Fernandez et al., 2001a) and a Gibbs Sampling algorithm named Stochastic Search Variable Selection
(SSVS) (George andMcCulloch, 1993; Diebolt and Robert, 1994). MCMC and SSVSmethods appear to have an advantage over
MAP estimates for large numbers of predictors because they do not have to evaluate all models and also may not require a
screening procedure. While of practical value, they provide only an approximate representation of the posterior space and
leave open the difficult problem of assessing convergence since not all states will be visited.

Two classes of exact Bayesian approaches have been described. In the ‘spike and slab’ model of Mitchell and Beauchamp
(1988), regression coefficients (β) are modeled by a finite mixture; a point mass at zero was considered the ‘spike’ while
a uniform alternative distribution was considered the ‘slab’. In this model, variables assigned to the ‘spike’ are removed.
Alternatively, George and McCulloch (1993) use a mixture of Normals as their prior distribution for β . Both of the Normal
distributions are centered at zero, but each has a different variance (β ∼ N(0, σ 2/ki) or β ∼ N(0, σ 2/ke)). One of the
variances is chosen to be sufficiently small so that β ’s drawn from this distribution can ‘safely’ be replaced by zero with
little loss; the other variance parameter is chosen large enough to give support to the set of predictor variables whose
coefficients may differ greatly from zero.

These two approaches highlight the distinction between different schools of thought on variable selection: subset
selection and ‘shrinkage’ procedures. In subset selection, regressors are either retained or dropped completely from the
model. The results are easily interpretable, but as discrete processes, they can be highly variable as small changes in the data
can cause very different models to be selected (Tibshirani, 1996). Included in the class of subset selection are BMA (Raftery,
1995), IBMA (Yeung et al., 2005), MCMC coupled with a Bayesian graphical model (Madigan and York, 1995; Raftery et al.,
1997;Hoeting et al., 1997; Fernandez et al., 2001a), ‘spike and slab’ (Mitchell and Beauchamp, 1988), and stepwise regression
techniques (Miller, 2002). The ‘shrinkage’ procedures are continuous processes that shrink the regression coefficients of
‘uninteresting’ regressors towards zero but donot necessarily set them to exactly zero. Included in the ‘shrinkage’ procedures
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are Ridge Regression (Hoerl andKennard, 1970a,b), nonnegative garrote (Breiman, 1995;Miller, 2002), and Stochastic Search
Variable Selection (SSVS) (George and McCulloch, 1993). The Lasso technique (Tibshirani, 1996; Efron et al., 2004) and its
Bayesian counterpart (Park and Casella, 2008; Hans, 2009, 2010) are shrinkage procedures in which some of the coefficients
are shrunk all the way to zero. Both Ridge Regression and the Lasso technique are equivalent toMAP estimators for Bayesian
variable selection procedures with a Normal and Double Exponential prior distribution on the regression coefficients,
respectively (Tibshirani, 1996).

Here, we describe Exact Bayesian Inference in Regression (EBIR), a procedure designed to explore the posterior ensemble
of candidate predictors. Like SSVS, EBIR falls into the category of ‘shrinkage’ procedures as we employ a mixture of Normal
priors for the regression coefficients, but more efficiently compute the quantities necessary to calculate the posterior
probability of sub-models. Using the Crime and Punishment data set (Ehrlich, 1973, 1975; Vandaele, 1978), wewill compare
the algorithm with three other Bayesian variable selection methods that are also capable of model averaging, the Bayesian
Lasso (Hans, 2010), MCMC (Raftery et al., 1997; Fernandez et al., 2001a), and BMA (Raftery, 1995). EBIR can be used not
only for variable selection and model averaging, but it also permits direct sampling of subsets from the posterior. Below,
we illustrate how these samples can be employed to characterize the posterior ensemble through the use of clustering and
centroid estimation.We also show how EBIR employs a binary tree that is identical to the tree used in the ‘sweep’ procedure
of BMA. As a result, EBIR provides a means to replace approximations to the posterior probability (such as BIC) with exact
posterior probabilities using an algorithm whose complexity is equivalent to methods that have already been shown to
handle problems with a very large number of predictors, specifically, the BMA and IBMA algorithms.

The rest of the paper is organized as follows. Section 2 describes our variable selection model. In Section 3, we describe
the EBIR algorithm and prove that its time complexity is O(m2). Section 4 uses simulations and the Crime and Punishment
data set (Ehrlich, 1973, 1975; Vandaele, 1978) to illustrate inferences from EBIR and for comparison with other methods. In
order to assess the potential limitations of the BIC approximation used in BMA, we also use the Crime and Punishment data
set to compare the results of EBIR to BMA. Section 5 consists of discussions and conclusions.

2. Calculating the probability density of the data f (y)

Beginningwith the usual linearmodel assumptions that error terms, ε, are independent, mean zero, normally distributed
random variables, we employ the likelihood function f (y|β, σ 2, Am) ∼ N(Xβ, σ 2I), where X is the matrix of regressors, I
is the identity matrix, and Am is a vector that indicates the included and excluded variables of the model being considered.
Conjugate priors are chosen for the prior distributions on the vector of amplitudes, β , and the variance, σ 2. Specifically, β
is a mixture of multivariate normal (β ∼ N(0, σ 2/ki) or β ∼ N(0, σ 2/ke), depending on whether a specific predictor is
included or excluded from the final model, respectively) and σ 2

∼ Scaled-Inverseχ2

v0, σ

2
0


. The marginal probability of

the data given a specific model, Am, is then:

f (y|Am) =


f

y|β, σ 2, Am


f (β|σ 2, Am)f


σ 2 dβ dσ 2.

Denote N as the number of data points and m as the total number of possible predictors. Let mi be the number of included
variables in sub-model Am and let me be the number of excluded variables [mi + me = m]. Associated with the included
variables is a ‘wide’ prior variance parameter ki and associated with the excluded variables is a ‘narrow’ prior variance
parameter ke. Let IAm be a diagonal matrix with either ki or ke on the diagonal corresponding to whether or not a specific
predictor is included. Furthermore, define vN = v0 + N, β∗

=

XTX + IAm

−1 XTy, and sN = (y − Xβ∗)T (y − Xβ∗) +

β∗T IAmβ∗
+ v0σ

2
0 . Integration yields:

f (y|Am) =
(v0σ

2
0 /2)v0/2Γ (vN/2)(ki)mi/2(ke)me/2

Γ (v0/2) (sN/2)vn/2(2π)N/2|XTX + IAm |1/2
.

The marginal probability of the data can then be obtained as follows:

f (y) =


all Am

f (y|Am) f (Am).

Let pi be the probability of including a predictor (‘slab’) and let pe be the probability of excluding a predictor (‘spike’)
[pi + pe = 1]. Define the prior probability of a sub-model as a Bernoulli product: f (Am) = pmi

i pme
e . Then:

f (y) =
(v0σ

2
0 /2)v0/2Γ (vN/2)

Γ (v0/2) (2π)N/2


All Am


p2i ki

mi/2 (p2eke)
me/2

(sN/2)vn/2|XTX + IAm |1/2
.

Notice that only a matrix determinant, matrix inverse (involved in the calculation of sN ), and a count of the number of
included (or excluded)model components needs to be completed for each sub-model Am; the rest of the terms in the density
function are independent of Am. Each of the matrix operations is naively O(m3), but can be proven to be on the order of
matrix multiplication (Bunch and Hopcroft, 1974, Cormen et al., 2001, Ch. 28, Villard, 2003). To date, matrix multiplication
is at best O(m2.376) by the Coppersmith–Winograd algorithm (Coppersmith and Winograd, 1990). The complexity of sN
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depends only on thematrix inverse if we pre-compute the quantities yTy, XTX , and XTy, and therefore has a time complexity
O(m2.376). Togetherwith the determinant and the count on the number of included variables, the overall time complexity for
an exact representation of the posterior space isO(Lm2.376), where L is the total number of sub-models to be examined. Space
complexity is upper bounded by the space required for the calculations on an individual sub-model (matrix storage—O(m2),
creation of vector β∗—O(m)) and any overhead associated with the data set (pre-computed values such as XTy − O(m),
XTX −O(m2), etc.), and is therefore O(m2) per sub-model. The high time complexity of this exhaustive calculation points to
the need for efficient matrix calculations if the regression is to be feasible for a large number of predictors.

3. Efficient calculations

Miller (1981) provided an efficient way to calculate the inverse of a sum of matrices. Suppose that G and H are arbitrary
nonsingular square matrices of the same dimension and that we seek the inverse of the matrix G + H , should it too be
nonsingular.Miller (1981) developed a recursive algorithm to calculate this inverse basedupon a fundamental lemma stating
that ifH is a matrix of rank one, then (G+H)−1

= G−1
−

1
1+g G

−1HG−1, where g = tr(HG−1). If thematrixH is of rank r > 1,
then we can write H = E1 + E2 + · · · + Er , and therefore G + H = G + E1 + E2 + · · · + Er where each Ek, 1 ≤ k ≤ r , has
rank one (Halmos, 1958), and iteratively apply the lemma (this decomposition is not unique). Finally, Miller (1981) shows
that there does exist a decomposition such that each of the ‘partial sums’ Ck+1 = G + E1 + E2 + · · · + Ek is nonsingular for
k = 1, . . . , r , ensuring that the lemma can be iteratively applied. His theorem is reproduced below:

Theorem. Let G and G + H be nonsingular matrices and let H have positive rank r. Let H = E1 + E2 + · · · + Er where each Ek
has rank one and Ck+1 = G + E1 + E2 + · · · + Ek is nonsingular for k = 1, . . . , r. Then if C1 = G,

C−1
k+1 = C−1

k − vkC−1
k EkC−1

k , k = 1, . . . , r

where

vk =
1

1 + trC−1
k Ek

.

In particular

(G + H)−1
= C−1

r − vrC−1
r ErC−1

r .

Because of the special structure of the EBIR model, our ‘H ’ matrix [IAm ]is a diagonal matrix whose entries specify whether a
specific variable will be included or excluded in the final model. Therefore, the rank one matrix, Ek, specifies a variable that
is added to (or subtracted from) the current model. To visualize this, think of a full binary tree where one branch signifies
‘inclusion’ or ‘1’ while the other branch signifies ‘exclusion’ or ‘0’ andwhose depth equals the number of possible predictors.
Fig. 1 provides a visual aid with three possible predictors where the root of the tree consists of the null model. Each leaf on
the tree holds the probability of one sub-model. The EBIR algorithmuses this lower complexity calculation ofmatrix inverses
and determinants to efficientlywork through the tree, performing a calculation onlywhen the ‘inclusion’ branch is traversed
(or the ‘exclusion’ branch if you start with the full model). Consequently, there is only a single matrix inverse and matrix
determinant to calculate (rather than one for each possible sub-model) with the iterative procedure providing all additional
matrix inversions and determinants. This binary tree is identical to the one utilized by the Leaps and Bounds procedure,
differing only in the matrix operations (‘Sweep’ versus EBIR) performed at each node. Since summing over all the leaves
in the tree marginalizes out each of the indicator random variables to yield the grand normalizing constant, the posterior
distribution of the ensemble of all candidate sub-models and the marginal probabilities for inclusion of each variable can be
readily obtained.

Theorem. Let L be the number of sub-models under consideration, N be the length of the data set, and m be the total number of
possible predictors. The EBIR algorithm has time complexity O(m2L) and space complexity O(m3).

In the most general setting, L = 2m. However, restrictions on allowable sub-models, such as a cap on the number of
included components, can reduce this number.

Proof. Time complexity: For examples of the complexities of recursion trees, see Cormen et al. (2001, Ch. 4). The algorithm
can be broken into two parts: Initialization and Recursion. The Recursion can be further partitioned into three stages: Divide
(into a number of sub-problems), Conquer (each of the sub-problems), and Combine (solutions to the sub-problems)

(i) Initialization: This step includes all calculations that are independent of sub-model choice (i.e. (2π)N/2 or Γ (vN/2) −

O(N)) or which need to be done only once (i.e. XTy used in the calculation of β∗
− O(Nm), (XTX)−1 and |XTX |

1/2
−

O(m2.376)). All operations are of polynomial order and thus will be dominated by the recursion step.
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Fig. 1. A Visualization of the Recursive EBIR Procedure. Given three predictors, the binary tree illustrates how to use the initial matrix, represented as ‘—
Null’, to iteratively generate each of the eight possible sub-models. A ‘0’ represents a specific predictor being excluded, while a ‘1’ represents inclusion by
variable selection. Each level of the tree corresponds to a specific predictor and calculations are performed only when the ‘Include’ branch is traversed.
Since each branch of the tree is independent of its sibling, EBIR is easily parallelizable.

(ii) Recursion.
a. Divide: Each internal node of our recursion tree with two children divides the set of sub-models in half based on

whether or not the current predictor is included or excluded. If excluded, no computation needs to be done and the
values are simply passed to the next level of the tree—O(1). If included, we need to update our matrix determinant
and matrix inverse. In our case, the iterative calculations of Miller (1981) can be further simplified because each of
the rank onematrices, Ek, has only one nonzero entry (denoted ek = the kth position on the diagonal). Therefore, vk =

1
1+C−1

k (k,k)ek
, where C−1

k (k, k) is the specified position in the matrix C−1
k ; C−1

k EkC−1
k reduces to vector multiplication

(ek ∗kth column of Ck
−1

∗kth row of Ck
−1). Thus, after the initial matrix inversion andmatrix determinant calculation

at the root of the tree, each subsequentmatrix inverse is anO(m2)multiplication and anO(m2)matrix addition, while
the matrix determinant is simply an O(1) multiplication of constants


det Cr+1 =

1
v1v2···vr

det C1


. In total, the divide

step is O(m2).
b. Conquer: The set of sub-models under consideration is continually divided in half until we reach the leaves

of the recursion tree. Here, we need to compute f (y|Am) ∝


p2i ki

mi/2
(p2e ke)

me/2

(sN /2)vn/2|XT X+IAm |1/2
. The numerator is O(m), the

determinant has already been calculated, and so it remains only to compute β∗
=


XTX + IAm

−1 XTy and then
sN = (y − Xβ∗)T (y − Xβ∗) + β∗T IAmβ∗

+ v0σ
2
0 . The matrix inverse and XTy have already been computed so β∗ is

O(m2), while sN is O(m2) + O(m) + O(1) = O(m2). In total, the conquer step is O(m2).
c. Combine: The cost of combining the sub-problems is O(1) if once calculated, the probabilities of each-sub-model are

stored in memory.

To find the overall time complexity of the Recursion step, we can add the time spent at each level of the tree. Each internal
node is both a Divide and a Combine step. For a tree with L leaves, there are L − 1 internal nodes with two children, a total
of O(m2L). Each leaf on the tree is a Conquer step. Thus, computation of all leaves costs O(m2L). In total, the recursion costs
O(m2L)+O(m2L) = O(m2L). Since the Initialization is of polynomial order, the entire algorithmhas time complexityO(m2L).
Alternatively, if L = 2m, define T (n) to be the time complexity of a problem of size n and define the recurrence:

T

2n

=


2T


2n−1

+ O(m2) n > 0
O(m2) n = 0, i.e. T (1).

Solving the recurrence for T (2m) gives the desired result.
Space complexity: At Initialization, we create several O(1) variables, the vector XTy[O(m)], as well as the initial matrix

[O(m2)] whose inverse [O(m2)] and determinant [O(1)] are calculated. In total, O(m2). Performing a depth-first traversal
of the tree requires the storage of one matrix O(m2), the value of the determinant O(1), and a vector recording the
inclusion/exclusion status of the variables O(m) at each level. Temporary variables involved in the updating of the matrix
inverse and determinant are maximally O(m). Since the depth of the tree ism, the space requirement of ‘divide’ is O(m3) +

O(m) + O(m2) + O(m) = O(m3). At each leaf, the calculation of f (y|Am) requires the temporary creation of the O(m) vector
β∗. Bywriting to disk f (y|Am) once computed for each sub-model, the total space complexity for ‘conquer’ isO(m). ‘Combine’
requires no space. Thus, the overall space complexity for initialization and recursion isO(m2)+O(m3)+O(m) = O(m3). �
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Table 1
The Improvement in Speed of EBIR over Brute Force Enumeration. The time (in seconds) required to directly calculate the
posterior probability of all possible sub-models through brute force enumeration (Column 1), or via the recursive EBIR
algorithm (Column 2). The fold reduction in time (Column 3) compares the timing of EBIR to brute force regression. The
posterior distributions for the two methods are identical.

# Variables Brute force EBIR Fold reduction

12 0.64 0.31 2.06
14 3.11 1.22 2.55
16 14.54 5.00 2.91
18 70.44 20.60 3.42
20 325.94 84.99 3.84
22 1531.05 347.85 4.40
24 6918.71 1419.45 4.87
26 34260.74 5921.75 5.79

4. Simulation study and comparison to existing methods

To illustrate the EBIR algorithm, we have created a simulation that displays the improvement in speed of the recursion
versus a direct (brute force) calculation of the posterior distribution. In addition, we examine the well-studied Crime and
Punishment data set (Ehrlich, 1973, 1975; Vandaele, 1978) anduse it to compare EBIRwith other Bayesianmethods. Bayesian
approaches permit an exploration of the full posterior space, rather than returning a single solution that is optimal under a
specified loss function. Thus, these approaches permit a greater characterization of the posterior spaces as we will illustrate
below. In all cases, EBIR was run on Matlab 2008b on a laptop with an Intel R⃝ CoreTM 2 Duo CPU 2.26 GHz processor with
2 GB of RAM. For this first example, we choose the parameters of the variable selection algorithm as: pi = pe (all sub-models
equally likely) and ki = 0.01, ke = 100 which is equivalent to the parameter setting


σβi
τi

, ci


= (10, 100) in George and
McCulloch (1993).

4.1. Improvements in speed

To evaluate the efficiency of the recursion over a brute force approach, we compare the amount of time required
to enumerate and calculate the marginal probability of all possible sub-models using EBIR to a direct calculation of the
posterior distribution. The simulation involves a progression from m = 12 to 26 potential predictors using N = 200
observations, yielding L = 212–226 possible sub-models. Predictors are obtained as independent standard normal vectors
X1, . . . , X26i.i.d. ∼ N200(0, 1) so that they are essentially uncorrelated. In all cases, the dependent variable, Y , was generated
according to the model

Y = 10X1 − 12X2 − 7X3 + 5X4 + 2X5 − X6 + ε

where ε ∼ N200(0, σ 2I) with σ = 2. As shown in Table 1, the advantage of EBIR grows with the number of variables,
resulting in an almost 6-fold reduction in time when 26 variables are considered. This implies that while EBIR’s reduction
in time complexity may only be O(m0.376), the difference in computation time can be significant even for small values of
m. Both types of calculations yield an identical posterior distribution on the sub-models, thus the predictive performance is
unchanged.

Suppose that you have a very large number of predictors (>100), but suspect that a smaller number of these predictors
are significant. Taking advantage of the recursion, we can eliminate from consideration any sub-model whose number of
included variables exceeds some threshold (kmax). In doing so, entire branches of the binary tree are pruned, reducing L from
exponential to

kmax
k=1


m
k


∼ O(mkmax). To simulate this type of analysis, wewill assume that we haveN = 250 observations

and a progression of m = 50–250 predictors. We ‘expect’ that 3 or fewer predictors are significant. Again, predictors
are represented as independent standard normal vectors X1, . . . , X250i.i.d. ∼ N250(0, 1) so that they are essentially
uncorrelated. The dependent variable, Y , is generated according to the model

Y = 5X17 − 6X29 + 3X41 + ε

where ε ∼ N250(0, σ 2I) with σ = 2. As Fig. 2 shows, the advantage of EBIR increases rapidly with the number of candidate
variables,m, and shows an almost 9-fold reduction in time over a brute force approach with 250 candidate variables. Exact
times can be found in the Supplemental Material.

A second approach to handling a very large number of predictor variables (>100) is to screen the variables using the
iterative approach employed in the IBMA algorithm (Yeung et al., 2005). Here, the predictors are first ranked according
to their individual predictive ability and then groups of variables are swapped in and out of the algorithm. For example,
suppose you have 100 predictors and use an iterative approach that considers 20 variables at a time, the top 10 variables
in terms of predictive ability and 10 of the remaining 90 variables. The latter group of 10 variables is swapped into and
out of the program until all of the variables have been considered. Given that the EBIR algorithm can exhaustively search
through 20 variables in roughly 85 s (Table 1), this iterative approach would be able to search 100 variables in about 765 s,
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Fig. 2. Simulation of a Large-Scale Regression. Given a large number of candidate variables (m), the simulation assumes that only a small number of
variables are significant. Shown is the amount of time (in seconds) required to directly compute the probability of all possible sub-models that have three
or fewer interacting predictors by brute force enumeration and through the EBIR recursion given a data set of size N = 250.

or just under 13 min. Enlarging the problem further, 250 predictors would able to be analyzed in roughly 34 min. The time
required for this approach will obviously change depending on the number of variables considered at any one time and on
the number of variables swapped at each iteration. The downside of this approach is that it no longer evaluates the entire
posterior space.

4.2. The crime and punishment data set

4.2.1. Comparison to MCMC approaches
Traditionally, crimewas characterized by deviant behavior thatwas linked to the offender’s presumeduniquemotivation,

albeit psychological, social, or family circumstances (for an overview, see Taft and England, 1964). In the late 1960s and
early 1970s, this paradigm changed and investigators instead sought to examine the relationship between crime and
various measurable quantities such as juvenile delinquency, variations in income and unemployment conditions (Fleisher,
1966) and the probability and severity of punishment (Ehrlich, 1973, and references therein). Becker (1968) and Stigler
(1970) argued for an ‘economics of crime’—the decision to engage in criminal activity was a rational choice determined
by the costs and benefits relative to other (legitimate) opportunities. If criminal activity was the outcome of a rational
economic decision, then the probability of punishment should act as a deterrent. Ehrlich (1973) developed a theory of the
participation in illegitimate activities, specified it mathematically, and tested it against empirical data obtained in 1960
from 47 states (excluding Hawaii, Alaska, and New Jersey). Errors in Ehrlich’s (1973) empirical analysis were corrected by
Vandaele (1978) whose data is used here. No attempt is made to consider the merits of Ehrlich’s theory. This data set is used
to illustrate the posterior inferences of EBIR and to compare the results of our variable selection algorithm to the Bayesian
Lasso (Hans, 2010) as well as to that of Raftery et al. (1997) and Fernandez et al. (2001a) who also used this data set for
illustrative purposes.

In a Metropolis–Hastings MCMC approach to solving a variable selection problem, the Markov chain is constructed by
defining a neighborhood nbd(Am) for each model that consists of the model Am itself, and the set of models with either one
more or one less variable than Am (Madigan and York, 1995; Raftery et al., 1997; Fernandez et al., 2001a). The transition
matrix q is then defined as q(Am → A∗

m) equal to a constant for all A∗
m ∈ nbd(Am) and q(Am → A∗

m) = 0 otherwise (Raftery
et al., 1997). If the chain is currently in state Am, then the next state is drawn from the transition matrix q and accepted with
probability

min

1,

Pr(A∗
m|Y )

Pr(Am|Y )


.

To calculate this quantity, the likelihood of the data given the proposed model, f (y|A∗
m), must first be calculated, which

as in our variable selection model involves a matrix determinant and a matrix inverse, both of which are O(m2.376).
Computationally, two differences exist between the MCMC procedures of Raftery et al. (1997) and Fernandez et al. (2001a)
and the EBIR procedure. First, the MCMC procedures calculate the likelihood function only if it is the first time that a state is
visited. Not all of the states will necessarily be visited by the Markov Chain, while other states may be visited repeatedly. In
the EBIR procedure, each and every state is visited exactly once. It is this feature of EBIR that allows for exact inferences to be
made about theposterior space. Second, theMCMCprocedures of Raftery et al. (1997) and Fernandez et al. (2001a) are ‘subset
selection’ procedures as described earlier. This means that the matrix of predictors is not the full matrix, but includes only
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the predictors selected for inclusion in themodel. Thus, thematrix that has to be inverted andwhose determinant calculated
in the likelihood function is usually smaller than the full matrix, reducing the computational burden. However, thesematrix
operations remain O(m2.376) as the speed-up for the matrix calculations we propose (which reduces the complexity to
O(m2)) in its current form is not applicable to ‘subset selection’ procedures and is therefore not utilized by these MCMC
algorithms.

As to the Bayesian Lasso, themain difference between themodels utilized in the EBIR algorithm and the Bayesian Lasso is
the prior distribution onβ . EBIR utilizes aNormal prior onβ whereas the Bayesian Lasso has aDouble Exponential prior onβ .
Because the Double Exponential prior is not conjugate, computing themarginal likelihood of the data requires the numerical
integration of 2k k-dimensional multivariate Normal integrals for a model of size k (Hans, 2010). Increasing the size of the
model increases both the number anddimension of the integrals that need to be evaluated, resulting in longer compute times
and possible inaccuracies due to the numerical integration. To enumerate amodel space withm possible predictors requires
the calculation of 3m integrals, which becomes intractable for m > 12 (Hans, 2010). To circumvent these computational
issues, a Gibbs Sampling approach similar to SVSS was developed in which updating each regression coefficient requires
only the numerical computation of two one-dimensional Normal probabilities (which can be done quickly and accurately)
instead of 2k k-dimensional multivariate Normal probabilities (Hans, 2010). The Bayesian Lasso has not previously been
used to analyze the Crime and Punishment data set. After a burn-in period of 1000, a chain of length 200,000 was generated
using the default priors, saving every 5th iteration.

To model the Crime and Punishment data set, we use the basic regression model given above, with the dependent
variable, y, representing the per capita crime rate. The fifteen possible predictors are shown in Table 2. As in the original
analysis, all data were log transformed except for the indicator variable for southern states. Given the 15 predictors, there
are a total of 215

= 32,768 possible sub-models to explore.
The results of the Crime and Punishment data analysis using EBIR are shown in Tables 2 and 3. Table 2 displays the

marginal probability of a given regressor being selected for inclusionwhile Table 3 shows the top performing sub-models. As
George and McCulloch (1993) demonstrate, altering the parameters of the prior distribution associated with the inclusion
and exclusion of variables places more or less focus on the variables most strongly associated with the response. When
comparing these results to previous analyses on the Crime and Punishment data set (Raftery et al., 1997; Fernandez et al.,
2001a), we find that setting the parameters for the prior distribution on β to values used by George and McCulloch
(1993)


ki = 0.01, ke = 100 equivalent to


σβi
τi

, ci


= (10, 100)

push the algorithm to be conservative in its selection

for inclusion. Changing these parameters to, for example, ki = 0.09, ke = 100

equivalent to


σβi
τi

, ci


= (10, 100/3)


makes the algorithm less conservative in its selections and provides results more akin to those obtained by both Raftery
et al. (1997) and Fernandez et al. (2001a) (Table 2). In the latter case, the top sub-model of Raftery et al. (1997) and
Fernandez et al. (2001a) has the second largest posterior probability while both of Ehrlich’s (1973) models fail to garner
much support (Table 3). On the other hand, the Bayesian Lasso was found to be more inclusive of variables than both the
EBIR and the MCMC procedures (Table 2). This is reflected not only in the marginal probability of inclusion for each of the
individual variables, but in the pi parameter for this model (represented by φ), which the Gibbs Sampler found to be ∼0.80.
Perhaps the most interesting feature is that the entire EBIR algorithm takes a mere ∼1.4 s to compute all 215 possible sub-
models, far outperforming the Bayesian Lasso (∼90 s) and the MCMC approach of Fernandez et al. (2001a) (80 s), even after
consideration for advances made in computing over the last several years. However, one must keep in mind that the time
required for MCMC approaches depends on a threshold of tolerance set for the algorithm, which will affect the length of the
chain.

4.2.2. Comparison to BMA
The Leaps and Bounds procedure (Furnival and Wilson, 1974) employed by Raftery’s (1995) BMA algorithm uses a tree

structure that is identical to the binary tree described in Section 3, differing only in the way Leaps and Bounds organizes
the variables, which will alter the traversal order. The Leaps and Bounds algorithm creates two trees which are traversed
in tandem. The root of one tree is the full model while the root of the other tree is the null model. In an attempt to cluster
‘good’ models near the roots of the trees and find the optimal sub-models of each size as quickly as possible, the variables
are ordered by their individual fit to the data. The ‘good’ models provide sharper bounds for the algorithm and the quicker
that they are found, the more of the sample space that can be truncated by the branch and bound technique.

The move from one sub-model to the next in the Leaps and Bounds technique is accomplished via a matrix ‘sweep’
operation akin to Gaussian elimination. The ‘sweep’ operation, like EBIR, uses one sub-model to quickly derive another
and like EBIR, is O(m2). Additionally, since the ‘sweep’ operation is completed once for each possible sub-model, it will
be done an equivalent number of times as the EBIR posterior probability calculation if the same truncation rules are
applied to both procedures. ‘Sweeping’ can be used to produce a matrix inverse (XTX)−1, as well as the quantities β∗ and
(y − Xβ∗)T (y − Xβ∗) needed for least squares regression (quantities utilized by the BMA procedure). Replacing the ‘sweep’
operation with the O(m2) EBIR algorithm described above provides all of the necessary components of the probabilistic
calculation, including the matrix inverse


XTX + IAm

−1 and the matrix determinant |XTX + IAm |
1/2 without increasing the

time complexity.
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Table 2
The Crime and PunishmentData Set. Themarginal probability (×100) of each of the 15 possible predictors of the 1960 crime rate being selected for inclusion
using two different parameter settings for EBIR, ki = 0.01, ke = 100 and ki = 0.09, ke = 100. Results are compared to the MCMC analysis of Raftery et al.
(1997) (denoted R97) and Fernandez et al. (2001a) (denoted F01), the Bayesian Lasso (Hans, 2010) (denoted H10), and the models hypothesized by Ehrlich
(1973) (denoted E1 and E2).

Predictor number Predictor ki = 0.01, ke = 100 ki = 0.09, ke = 100 R97 F01 H10 E1 E2

1 Percentage of males age 14–24 41 73 79 86 78 ∗

2 Indicator variable for southern state 7 17 17 22 43
3 Mean years of schooling 73 95 98 99 86
4 Police Expenditure in 1960 66 72 72 67 86
5 Police Expenditure in 1959 42 49 50 42 72
6 Labor Force Participation Rate 3 8 6 15 62 ∗

7 Number of Males per 1000 Females 4 8 7 15 70
8 State Population 7 19 23 33 58
9 Number of Nonwhites per 1000 People 21 56 62 69 49 ∗ ∗

10 Unemployment rate Urban Males, age
14–24

3 9 11 20 50 ∗

11 Unemployment rate Urban Males, age
35–39

10 35 45 60 57

12 Wealth 13 29 30 31 57 ∗ ∗

13 Income Inequality 99 100 100 100 99 ∗ ∗

14 Probability of Imprisonment 40 78 83 91 80 ∗ ∗

15 Average Time Served in State Prisons 4 18 22 33 48 ∗ ∗

Table 3
MAP estimates of the Crime and Punishment Data Set. The top 10 sub-models in terms of their posterior probability (×100) as determined by EBIR under
two different parameter settings. For comparison purposes, the top sub-model of Raftery et al. (1997) (denoted R97) and Fernandez et al. (2001a) (denoted
F01), as well as the models hypothesized by Ehrlich (1973) (denoted E1, E2), have also been included.

Rank: Posterior probability (%),
ki = 0.01, ke = 100

Model

1 6.79 3 4 13
2 6.43 1 3 4 13
3 5.33 4 13
4 3.76 3 5 13
5 3.49 5 13
6 3.35 3 4 13 14
7 3.22 1 3 4 13 14
8 2.72 3 5 13 14
9 2.32 3 4 9 13 14

10 2.20 1 3 5 13

R97, F01 0.39 1 3 4 9 11 13 14
E1 2.41E−10 1 6 9 10 12 13 14 15
E2 1.73E−06 9 12 13 14 15

Rank: Posterior probability (%)
ki = 0.09, ke = 100

Model

1 2.71 1 3 4 9 13 14
2 2.01 1 3 4 9 11 13 14
3 1.91 1 3 4 13 14
4 1.55 1 3 4 9 11 13 14
5 1.51 3 4 13 14
6 1.39 1 3 5 9 13 14
7 1.32 1 3 4 13
8 1.31 1 3 4 9 13 14 15
9 1.13 1 3 5 9 11 13 14

10 1.13 1 3 4 9 12 13 14

R97, F01 2.01 1 3 4 9 11 13 14
E1 4.37E−09 1 6 9 10 12 13 14 15
E2 1.21E−06 9 12 13 14 15

Leaps and Bounds returns the sum of squared error for each sub-model that it analyzes. BMA converts this squared
error to a BIC statistic which approximates the probability of the remaining sub-models given the data. Given the squared
error, calculation of the BIC statistic requires a constant number of operations (two logarithms and three O(1) additions and
multiplications). On the other hand, once the EBIR matrix operations are complete, two O(m) vector multiplications and a
constant number of other operations (two logarithms, and fewer than a dozenO(1) additions andmultiplications, depending
on how parameter values are stored in memory) need to be computed to obtain the exact posterior probability. Thus, when
same elimination rules are employed, only a small difference in the constants exists between the two procedures.
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Table 4
Comparing BMA and EBIR. Each row of the table represents one of the 14 (corrected) sub-models selected by Strict Occam’s Windowwith its corresponding
BIC Score and BIC Probability, normalized to only the 14 sub-models shown below (Raftery, 1995). The Exact Probability column gives the posterior
probability of these 14 sub-models using EBIR, again normalized to only the 14 models shown below (which account for only ∼19% of the posterior
space). The True Rank column shows the overall probabilistic rank of the given sub-model from the posterior distribution when the exact probabilities are
calculated on the entire sample space. This column can be compared to the first, which gives the rank of the sub-models according to the BMA procedure.
The last three rows of the table give the marginal probability of each variable being selected for inclusion (PMP = Posterior Model Probability). The ‘True
PMP’ is taken from the analysis done for Table 3. All probabilities have been multiplied by 100.

BMA rank Models BIC score BIC prob. Exact prob. True rank

1 1 3 4 9 11 13 14 15 −55.9 24.0 5.1 17
2 1 3 4 9 11 13 14 −55.4 18.3 11.4 2
3 1 3 5 9 11 13 14 −54.4 11.3 6.4 9
4 1 3 4 9 13 14 15 −53.8 8.3 7.4 8
5 1 3 4 11 13 14 −53.6 7.7 8.8 4
6 1 3 4 8 9 13 14 −53.1 5.8 4.4 21
7 1 3 5 11 13 14 −52.7 4.9 5.1 16
8 3 4 8 9 13 14 −52.4 4.2 5.7 14
9 1 3 4 9 13 14 −52.4 4.2 15.3 1

10 1 3 5 9 13 14 15 −51.5 2.7 2.5 47
11 3 5 8 9 13 14 −51.3 2.4 3.1 34
12 1 3 5 9 13 14 −51.2 2.3 7.9 6
13 1 3 4 11 13 −50.9 2.0 6.1 12
14 1 3 4 13 14 −50.9 1.9 10.8 3

93 0 100 76 24 0 0 12 84 0 68 0 100 98 35 BIC PMP
91 0 100 75 25 0 0 13 69 0 43 0 100 94 15 Exact PMP
73 17 95 72 49 8 8 19 56 9 35 29 100 78 18 True PMP

For example, in a direct comparison on the Crime and Punishment data set, the ratio of the compute time for EBIR to
BMA was ∼1.5:1, implying that the cost of an exact answer is minimal. Furthermore, these calculations were less than 25%
of the total run time of Leaps and Bounds. These specific results are of course dependent on the computer and programming
language used, and the efficiency of the written code. Since our exact probabilistic calculation can be done in nearly the
same time as the BIC approximation, an approximation of the posterior probability is no longer necessary for a method that
has been shown to work for very large problems (Yeung et al., 2005; Eicher et al., 2007).

Given the set of sub-models produced by the Leaps and Bounds algorithm on the Crime and Punishment data set (Raftery,
1995), a further truncation of the sample space is done by BMA based on the BIC statistic. Symmetric Occam’s Window
eliminates all sub-models that are much less likely than the most likely sub-model, by default 20 times less likely. Strict
Occam’sWindow further reduces the set ofmodels by eliminating all sub-models withmore likely sub-models nestedwithin
them. The Symmetric Occam’s Window leaves 51 possible sub-models covering ∼31% of the posterior space, while the Strict
Occam’sWindow leaves 14 possible sub-models covering∼18% of the posterior space for the Crime and Punishment data set
(Raftery, 1995). Table 4 compares the BIC approximation of the probability of each sub-model left by Strict Occam’s Window
to its true posterior probability, normalized by the sum of these 14 sub-models. Table 4 also provides the probabilistic
ranking of each of the sub-models according to the BMA procedure and to the posterior probabilities from EBIR. As shown
in the table, themodel ranks based on BMA do not correspondwell with ranks based on exact posterior probabilities as only
two have the same rank. Furthermore, the model with the highest posterior probability has BMA rank #9, while the model
ranked highest by BMA is ranked #17 based on its EBIR posterior probability.

4.2.3. Model averaging and predictive performance
Using the MAP model as a point estimate is only one of the possible ways to describe the posterior distribution over the

set of included variables. Since the EBIR algorithm calculates the posterior probability of every possible sub-model, these
probabilities can be combined to form the ‘average’ solution through a process known as model averaging (Raftery, 1995).
For example, suppose that ∆ is a quantity of interest. The Bayesian inference about ∆ is based on its posterior distribution,
which is:

f (∆|Y ) =


All Am

f (∆|Y , Am) f (Am|Y )

i.e. The posterior distribution of the quantity of interest, ∆, given the data, Y , is the sum of the posterior distribution of ∆

given each of the possible models, weighted according to their posterior probability. For the Crime and Punishment data set,
the quantity of interest is the prediction of the level of crime for a given set of variables; the average solution would be the
one where each variable is included in proportion to its marginal probability.

However, the ‘average’ solution is typically not among the set of feasible solutions to a variable selection problembecause
marginal probabilities are almost certainly not integer. The solutionwhich falls closest to the average solution under squared
error loss is the centroid,which is the solution thatminimizes the expected squared distance to the posteriormean (Carvalho
and Lawrence, 2008). Furthermore, when inferences on binary or nominal variables are of interest, centroid estimators
yield solutions that minimize Hamming distance and all pth power loss functions. To find the centroid solution in a variable
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Fig. 3. Predictive performance as a function of model complexity for the Crime and Punishment data set. Using the logarithmic scoring rule of Good
(1952), the predictive performance of the model averaged, the ensemble centroid, a mixture of cluster centroids, and the MAP solution are plotted for a
given number of included variables on the Crime and Punishment data set.

selection problem, include any predictorwhosemarginal probability is above 50% and exclude any predictorwhosemarginal
probability is below 50%. For example, in the Crime and Punishment data set, the centroid solution would be to include
variables 1, 3, 4, 9, 13 and 14, which coincidentally is also the MAP estimate. By choosing a set of variables for inclusion, we
expect to give up some of the predictive ability of the model averaged result. But how much do we give up by choosing a
single solution? To find out, we compare the predictive performance of these solutions.

To measure predictive performance, we randomly split the Crime and Punishment data set into two halves, one, YTrain,
which will be used for training and the other, YTest, which will be used to test a model’s predictive ability. For an individual
model, Am, the logarithmic scoring rule of Good (1952) takes the form:

y∈YTest

log f (y|Am, YTrain).

Predictive performance for the model averaged solution is therefore:
y∈YTest

log

 
All Am

f (y|Am, YTrain)f (Am|YTrain)


.

Fig. 3 shows the score of the MAP, Centroid, and Model Averaged solution for a given number of included predictors. Built
into a Bayesian model is the trade-off between model complexity and a better fitting model. Thus, we expect a logarithmic
scoring rule (which is similar to Shannon Entropy) to peak, after which an improvement in fit is counterbalanced by an
increase in the model complexity. Fig. 3 shows that this peak occurs for models with 4–5 included variables. As you would
expect, the model averaged solution provides a better prediction than does any individual model using this logarithmic
scoring rule (Madigan and Raftery, 1994). Note that the MAP solution is not always the best model in terms of its predictive
ability. The centroid solution appears to fare somewhat better where the curve for the model averaged solution peaks.

However, there is no assurance that the posterior distribution in a model selection problem is convex. Instead, it may
contain multiple modes. Clustering provides a useful way to ascertain multimodality in posterior spaces (Ding et al., 2006).
When the posterior contains distinct clusters of solutions, no single model can reasonably characterize the posterior space,
since such a point estimate must either fit one of the clusters or lie in the space outside of each. In this setting, the mean
will lie in the ‘desert’ between the distinct clusters, while the mode can be anywhere in the space, even far from the bulk of
the posterior mass (Carvalho and Lawrence, 2008). Thus, the characterization of a multimodal posterior space will require
a least one point estimate for each distinct cluster.

To explore the posterior space for evidence of multimodality, we clustered the posterior weighted ensemble of possible
sub-models using the K -Means clustering algorithm built into Matlab. The centroids for two clusters contain variables 1,
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3, 9, 13, 14 and either variable #4 or #5. With four clusters, we have the same two cluster centroids as before, both with
and without variable #11. The predictive performance of the posterior weighted mixture of the centroids of the clusters is
shown in Fig. 3. As you can see, with two clusters, the weighted mixture of centroids tracks the predictive performance of
the ensemble centroid. With four clusters, the weighted mixture of centroids outperforms both the MAP and the ensemble
centroid solution, and has a predictive performance closer to themodel averaged solution. Using a larger number of clusters
would allow a weighted mixture of centroids to more closely approximate the full model averaged solution and therefore
reduce the difference in predictive performance between these two solutions.

5. Discussion and conclusions

EBIR efficiently provides an exact representation of the posterior space of all possible sub-models and consequently, the
marginal probability of including each of the predictor variables when the number of variables is not too large. Thus, this
fully Bayesian model can be used for variable selection, model averaging applications, and examination of the shape of the
posterior space. For a posterior distribution that is multi-modal, no single solution can accurately characterize this complex
space. Clusters of solutions can help to explain why the MAP or ensemble centroid solutions do not perform as well, in
terms of predictive performance, as the model averaged result. However, while best in terms of predictive performance, a
model averaged result does not return a feasible solution to the model selection problem that end line users often want.
A mixture of cluster centroids provides a compromise between these two extremes by returning a small set of feasible
solutions weighted according to their posterior probabilities.

There are three circumstances in which EBIR may be used to advantage. (1) Any application in which BMA or IBMA has
been or could be used to advantage; (2) Problems involving a large number of regression analyses. For example, in change
point analysis (Auger and Lawrence, 1989; Liu and Lawrence, 1999; Ruggieri et al., 2009), variable selection is required on
every possible substring of the data. In this case, the reduction in compute time can be realized for each of the N(N + 1)/2
substring calculations that need to be performed on a data set of length N; (3) Problems involving a very large number of
predictors, in which there is interest in examining the posterior distribution of lower order tuples of variables, such as in
genome studies where epitasis plays a role in phenotype or disease risk. To address the practicality of this application, we
simulated a moderate sized problem (Fig. 2) and project this to the very large size problem that could be run on current
parallel computing systems. Our simulation studies showed a significant and increasing reduction in time as the number of
predictors grew (Table 1, Fig. 2).

Because any internal node of the binary tree (Fig. 1) can have its independent ‘include’ and ‘exclude’ branches computed
separately, this algorithm is readily amenable to parallelization. Thus, when parallel systems are available, the number of
models that can be included in exact posterior probability calculations increases nearly linearlywith the number of available
processors. Setting a hard limit on the number of variables selected for inclusion in an exhaustive search can reduce the
time complexity from exponential to polynomial, and thus the posterior distribution can be obtained for all permitted
models. We encountered no numerical difficulties as our results consistently matched brute force methods. It is possible
that numerical difficulties specific to this approach may arise in other applications, but we expect that these are unlikely.
While we believe that our projection from a moderate to a very large sized problem is reasonable, practical problems could
arise in the implementation of this approach on parallel computing systems.

This procedure, like all others, becomes overwhelmed by the exponentially increasing number of sub-models when
all combinations of candidate predictors are considered. MCMC approaches (Smith and Kohn, 1996; Raftery et al., 1997;
Fernandez et al., 2001a) can handle a larger number of predictors before running into this computational ‘wall’ because they
do not evaluate all possible sub-models. While in such cases their solutions can be of practical value, convergence of the
Markov Chain must be addressed. Although not discussed in this context, EBIR could also be utilized by an MCMC approach
that traverses the probability space throughmodels that are ‘neighbors’ as defined in Raftery et al. (1997).When the number
of predictors becomes very large, a preliminary screening procedure, parallel processing, or a restriction on the number of
included predictors is required to reduce the dimensionality of the problem.

EBIR was tested not only with simulations, but also on the publicly available Crime and Punishment data set (Vandaele,
1978). Our analysis of the Crime and Punishment data set showed that BIC based solutions differed substantially from
exact Bayesian inferences (Table 4). One possible explanation is that the BIC approximation (Raftery, 1995) is based upon
a convergence result—an approximation that improves as the number of observations increases relative to the number of
predictors.

Alternatively, as with all Bayesian procedures, the posterior distribution is dependent on the prior models and their
parameter settings. Thus, discrepancies in the BMA and EBIR probabilistic rankings may stem from differences in their
prior models. The prior model assumptions of BIC are implicit, and as pointed out by Chen and Chen (2008) can be quite
unreasonable. Specifically, the constant prior behind BIC amounts to assigning probabilities to classes of sub-models that are
proportional to their size. Accordingly, the prior increases almost exponentially in class size. ‘‘This is obviously unreasonable,
being strongly against the principle of parsimony (Chen and Chen, 2008)’’.

As indicated by George andMcCulloch (1993), altering the ‘spike’ and ‘slab’ parameters can change the set of sub-models
with high posterior probability, a result echoed for EBIR through the Crime and Punishment example. Specifically, since
EBIR falls under the shrinkage family of variable selection models, the investigator can tune the degree of shrinkage. Thus,
the use of this approach requires an investigator to select a range of parameter values near zero that are too small to be of
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‘‘interest’’, just as an investigator is required to set the level of Type I error that merits further study. For EBIR, the larger
the difference between the values of ke and ki, the larger the ‘penalty’ will be for including an additional variable in the
model. Further study is required to fully understand the impact of these settings. A second limitation to the EBIR procedure
is that the probability density function is designed for homoscedastic Gaussian errors. Thus, the procedure should be able
to generalize to mixtures of Gaussians, but may not be easy to generalize to non-Gaussian distributions.

One important argument for the ‘shrinkage’ approach is based on the reasoning of Efron (2004) who argues for the use
of the terms ‘interesting’ and ‘uninteresting’ rather than describing variables in terms of their statistical significance. An
investigator may be uninterested either because the discovery of such small differences would be of no practical value or
because such small differences could too easily be the result of artifacts such as unobserved confounding or unexpected
correlation (Efron, 2004). Variables that fall in the ‘uninteresting’ category have their coefficients close to zero, so that even
if they are statistically significant, their effect is too small to be of interest.

EBIR can be used to replace BIC approximations with an exact probabilistic calculation in model selection procedures
without a change in time complexity. Since EBIR employs the same tree configuration as the ‘sweep’ procedure of Leaps
and Bounds and because it has the same time complexity, O(m2), exact posteriors can be employed in a Leaps and Bounds
based screening procedure with little addition to the computational load. In this setting, our procedure provides a way to
efficiently calculate the posterior probabilities of the models selected by the screening step up to the unknown normalizing
constant and thus a means to rank the selected models according to their posterior probabilities. Additionally, since BMA
(specifically, IBMAwhich repeatedly uses BMA) has been shown to work for very large problems, EBIR can capitalize on this
existing iterative method to become applicable to problems of this size without a substantial difference in time. Of course,
since the posterior space is truncated, EBIR will give posterior probabilities only for the remaining portion of the posterior
space.

We capitalize on Miller’s (1981) recursive procedure to circumvent the most computationally intensive calculations for
a variable selection procedure, matrix inversions andmatrix determinants, as addition or deletion of a variable is equivalent
to adding amatrix of rank one. This reduction in time complexity to O(m2) extends the number of models amenable to exact
posterior calculations.

Availability: The Matlab implementation of this algorithm is available under the GNU Public License by contacting Eric
Ruggieri at ruggierie@duq.edu.
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