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[1] Although different paleoenvironmental time series resolve past climatic change at different time scales,
nearly all share one characteristic: they are nonstationary over the length of the record sampled. We describe a
recursive dynamic programming change point algorithm that is well suited to identify shifts in the Earth system’s
variability, as it represents a nonstationary time series as a series of regimes, each of which is homogeneous. The
algorithm fits the data by minimizing squared errors not only over the parameters of the models for each
subsequence but also over an arbitrary number of boundary points without restrictions on the lengths of regimes.
The versatility of the algorithm is illustrated by an application to 5 Ma of Plio-Pleisotcene d18O variations. We
seek to identify either the single dominant ‘‘Milankovitch’’ frequency or linear combinations of frequencies and
consistently identify changes �780 ka and �2.7 Ma, among others, in each analysis done. Our applications
also provide support to the recent hypothesis that obliquity-based Milankovitch terms can account for the circa
100 ka cycle that empirically dominates the most recent 1 million years.
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1. Introduction

[2] A very large fraction of paleoclimatic research
involves producing and analyzing time series. Instrumenta-
tion and laboratories have become progressively more
efficient at generating long, well-resolved representations
of the Earth’s past climate. Examples include an effort to
characterize global temperatures over the past millennium
from a variety of proxies [Briffa et al., 1995; Esper et al.,
2002;Mann et al., 1998; Jones andMann, 2004], millennium-
long reconstructions of equatorial Pacific surface oceanog-
raphy using stable isotopes from corals [Cole et al., 1993;
Cobb et al., 2003; Quinn et al., 1998], high-resolution
stable isotope and trace gas records from polar ice cores
[Chappellaz et al., 1993; Dansgaard et al., 1993; Mayewski
et al., 1993; Petit et al., 1999] and records of glacial-
interglacial climate cycles derived from ocean sediment
cores [Bloemendal and deMenocal, 1989; Imbrie et al.,
1984, 1989; Herbert and Mayer, 1991; Joyce et al., 1990;
Lisiecki and Raymo, 2005; Ruddiman et al., 1986].
[3] Although these different time series resolve past

climatic change at different time scales, nearly all share
one characteristic: they are nonstationary over the length of
the record sampled. Changes routinely occur in the mean
(trends), amplitude of variability, and in dominant spectral

frequencies over the course of time [Cobb et al., 2003; Ghil
et al., 2002; Jones and Mann, 2004; Maasch, 1988; Mann,
2004; Paillard, 1998; Ravelo et al., 2004; Rutherford et al.,
2003; Vautard and Ghil, 1989]. One might then idealize
paleoclimatic time series as a succession of a number of
segments with internally homogeneous statistical properties,
bounded by abrupt or gradual shifts to subsequent or
antecedent regimes. Such a view might lead to progress in
understanding climate evolution in a number of ways. It
might help optimize sampling strategies, by allowing pale-
oclimatologists to improve the temporal resolution or spatial
coverage of ‘‘model’’ segments of time, which represent
much longer spans of Earth history adequately from a
statistical point of view. Identifying the duration of
‘‘regimes’’ and determining the timing of their transitions
might also lead to a more fundamental understanding of the
underlying forces in the climate system that lead to the
nonstationarity observed at many time scales. However,
Wunsch [1999] cautions that purely random fluctuations
of a stationary time series may yield a time series that
appears nonstationary.
[4] Since we do not have theories that confidently predict

when and how often the climate system went through
transitions, the search at present is empirical. We introduce
here the change point method to the study of one particular
aspect of the Earth’s past in which nonstationarity is already
well known: the evolution of oxygen isotopes measured
from benthic foraminifera, a proxy for high-latitude climate
change (high-latitude ice sheet growth and decay, and
variations in temperatures of deep water masses fed by the
high-latitude surface oceans). We analyze a 5-Ma-long
orbitally tuned, global stack of many individual records
[Lisiecki and Raymo, 2005], as well as a shorter 2.5-Ma-
long nonorbitally tuned stack [Huybers, 2007]. Much pre-
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vious work has established that the benthic d18O record
contains a number of periodic components produced or
paced by cyclic variations in the Earth’s orbit. We also know
from previous work that the oxygen isotope record contains
at least two first-order transitions in behavior: the shift
from earlier 41-ka-dominated glacial cycles to later 100-ka-
dominated glacial cycles, the so-called ‘‘mid-Pleistocene
transition’’, which occurred some time between 0.8 and
1.2 Ma [Ruddiman et al., 1986; Berger et al., 1993] and the
earlier intensification of large-scale Northern Hemisphere
glaciation at around 2.7 Ma [Shackleton et al., 1984;
Raymo, 1994]. We evaluate the strengths and weaknesses
of the change point method in identifying both of these
major changes in paleoclimatic behavior and in deducing
more subtle aspects of climate evolution over the past 5 Ma.
The results are sufficiently positive to suggest that the
change point method may be applied to many other time
series in which changes in behavior are suspected.

2. Background: Detecting Changes in Orbital
Components in Plio-Pleistocene d18O Time Series

[5] Existing analytical methods stop far short of adequately
modeling the complex, nonstationary story of environmental
change. Most approaches have relied on modifications of
conventional spectral analysis. The common procedure of
parsing paleoclimatic time series into shorter time windows
of fixed length, and analyzing these as a series of Fourier
spectra [e.g., Park and Herbert, 1987; Joyce et al., 1990;
Yiou et al., 1991; Birchfield and Ghil, 1993] is most directly
relevant here. This method is sufficient to characterize
intervals of geological time in terms of dominant frequen-
cies, and to detect first-order changes in the relative sensi-
tivity of past climate to the different orbital terms. However,
because it uses moving windows of fixed size, its blurring of
boundaries makes it inherently low resolution. Furthermore,
sidebands of fundamental frequencies will appear during
intervals of rapid (relative to the window length) spectral
change, obscuring the underlying dynamics of the time
series. Wavelet analysis [Liu and Chau, 1998; Lau andWeng,
1995; Torrence and Compo, 1998; Bolton et al., 1995] has
been applied to paleoclimatic time series as a means to
better localize the spectral properties of nonstationary time
series, but it too suffers from the appearance of sidebands
during intervals of rapid change [Bolton et al., 1995]. Its
ability to illustrate contributions jointly in time and frequency
domains is an asset, but it lacks an obvious procedure for
objectively determining points of change in a time series for
a single frequency or linear combinations of frequencies.
Singular spectrum analysis (SSA), like principal component
or empirical orthogonal function techniques, decomposes a
time series into a series of orthogonal functions that can be
ordered by the variance explained. SSA is especially useful
for distilling a time series into trend (not necessarily linear),
oscillatory, and noise components [Ghil et al., 2002]. In
common with wavelet analysis, SSA [Vautard and Ghil,
1989; Vautard et al., 1992; Ghil et al., 2002] allows the
investigator to detect changes or breaks in the amplitude of
oscillatory components. However, because the spectral
resolution of oscillatory components is often rather broad

[Vautard and Ghil, 1989], it is not especially suited for
detecting regime changes in time series which are known or
suspected to contain strong periodic components, as is the case
for glacial-interglacial variations in orbitally resolved time
series.
[6] Studies of the transition from 41 ka to 100 ka glacial

cycles in the Pleistocene confirm the unsatisfactory state of
break point determination at present: different approaches
have variously put the onset at 1.5 Ma [Rutherford and
D’Hondt, 2000], �0.90 Ma [Maasch, 1988; Raymo et al.,
1997], or 0.64 Ma [Mudelsee and Schulz, 1997] and
determined that it was both gradual [Park and Maasch,
1993] and abrupt [Maasch, 1988; Mudelsee and Schulz,
1997]. The unsettled debate may arise because the time
series methods outlined above inadequately trade off fre-
quency and temporal resolution in evolving time series. We
analyze Plio-Pleistocene climate evolution using a flexible
change point detection algorithm with sinusoidal models.
The approach has aspects in common with Tome and
Miranda [2004], who described a least squares fitting
procedure for fitting linear models to paleoclimate time
series. Tome and Miranda automate the creation of a matrix
of over determined linear equations and consecutively solve
for every combination of possible solutions that satisfies
their constraints; in the end, they choose the solution that
minimizes the sum of squared residuals. However, their
work is limited to piecewise linear fits and the time
complexity of the algorithm grows exponentially with the
length of the time series, thus becoming computationally
intensive with long series.
[7] In what follows, we describe an algorithm that removes

all restrictions on window size. The spacing between breaks in
behavior and the length of segments depends only on the
underlying behavior of the time series and the model chosen
for fitting the data. Specifically, we propose an algorithm that
optimally partitions a time series at k ‘‘change points’’,
subdividing a time series into (k + 1) subintervals, each of
which is characterized by a specified function using parameter
values that minimize the sum of square residuals. This least
squares algorithm works in the time domain and optimizes
over both the parameters of functions describing the sub-
intervals and the locations of the change points, locations in
the time series where significant changes in the amplitude,
frequency, or phase occur. The algorithm will return the
globally optimum solution (in terms of least squares) and
has no possibility of returning merely locally optimum
solutions. If the global optimum is unique, then the unique
global optimum will be returned; if there are several equiv-
alent (in the least squares sense) global optima, then only one
of the equivalent global optima will be returned (the algorithm
could easily be adjusted to return all equivalent optima). In the
present analysis, our algorithm returns the optimal location of
change points in a time series for a specified number of change
points, but does not estimate the uncertainty of the location in
time of change points nor in the values of the parameters.
Uncertainty estimates can be obtained if the problem is instead
framed probabilistically and Bayesian statistical procedures
are employed [Liu and Lawrence, 1999].
[8] This algorithm approaches a problem that is a general-

ization of the problem addressed by Tome and Miranda
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[2004], but differs from it in two important ways: (1) Dynamic
programming [Bellman, 1957] is employed for optimization
and (2) each subinterval is described by linear combinations
of sinusoidal functions. For this particular implementation of
the change point method, subintervals are characterized by
linear combinations of sinusoidal functions of specified
orbitally related frequencies with the amplitude and phase
parameters for all frequencies chosen to minimize the sum of
squared residual error. (The change point algorithm could
easily be adapted to models other than sinusoidal, if appro-
priate.) We chose to focus on two principle ‘‘Milankovitch’’
frequencies, which emerge from the classic Milankovitch
hypothesis that summer insolation at 65�N paces ice age
cycles and whose presence in the data was confirmed by
Fourier analysis. Cycles at periods of 23 and 41 ka represent
the most important terms of climatic precession and obliquity,
respectively. In addition, we wish to detect changes in the
importance of the circa 100 ka cycle that dictates the timing of
the large ice ages of the late Pleistocene [Imbrie et al., 1984,
1992]. This period may derive in some nonlinear fashion from
eccentricity modulation of the precessional amplitude, as
bundles of 4 or 5 precessional cycles [Ridgwell et al., 1999]
or it may result from nonlinear responses to the obliquity cycle
[Tziperman and Gildor, 2003;Huybers and Wunsch, 2005] as
groups of two or three 41 ka cycles. Because the origin of the
100 ka cycle is so unclear, we treat its detection in several
different ways in this study.
[9] We approached the problem of detecting change

points in the 5-Ma-long d18O time series in steps of
ascending complexity. In the first analysis, we defined break
points by changes in the dominance or amplitude of the
single best ‘‘Milankovitch’’ frequency that explains the
most variance in each subinterval. We varied the number
of change points from 2 (corresponding to well-known
major shifts in the behavior of the oxygen isotope record
at circa 0.9 and 2.7 Ma) to a larger number (up to 8) to
explore how well the method fares against conventional
analyses, and to explore more nuanced changes. Second, we
increased the complexity of the model so that regimes are
characterized by optimal linear combinations of the 23, 41,
and 100 ka frequencies. In this setting, we compare results
obtained from both orbitally tuned and nonorbitally tuned
data sets. Last, we compared the ability of a model that
represents the 100 ka glacial cycle as a combination of
82 and 123 ka integer multiples (subharmonics) of the
obliquity cycle to capture circa 100 ka energy in the oxygen
isotope time series, to the fit obtained with the classic
assumption that the 100 ka component represents a fixed
response to the eccentricity envelope to climatic precession.
We interpret the timing and nature of segments defined by
the change point method in the context of decades of
work in studying Plio-Pleistocene glaciations, and point
the way to future improvements in applying the change
point method to paleoclimatic problems.

3. Methods

[10] Since we want to consider all possible locations of
change points and lengths of intervening segments (i.e.,

climate regimes), change point analysis of the d18O time
series presents a huge number of possible solutions. Dy-
namic programming provides a practical path through the
forest of possibilities [Bellman, 1957]. It guarantees glob-
ally optimal solutions of problems that can be divided into
progressively smaller sets of subproblems, the smallest of
which can easily be solved. The method then builds
solutions to a progressively growing set of subproblems
until the original full problem has been solved. Dynamic
programming has become a well established means of
solving problems that can be partitioned in this way. It is
described in many textbooks in operations research [Hillier
and Lieberman, 2005, chapter 10; Wagner, 1975, chapters
8 and 10; Winston, 2003, chapter 18; Lew and Mauch,
2007]. This methodology has been widely and successfully
applied in many fields, including extensive application in
the emerging fields of genomics and bioinformatics [Durbin
et al., 1998, chapter 2; Jones and Pevzner, 2004, chapter 6;
Konopka and Crabbe, 2004]. Dynamic programming was
first applied to the change point problem by Hawkins
[1976]. Change point analysis was first applied to biopoly-
mer sequences by Auger and Lawrence [1989], and Liu and
Lawrence [1999] show how Bayesian inference procedures
allow for assessment of uncertainties in the unknown
parameters in a change point analysis.
[11] In this paper we address the following problem:

given a time series, in this case a benthic d18O time series,
and a proposed set of models, we seek to minimize the sum
of squared error over all possible sets of parameters and
over all possible locations of change points. We impose the
constraint that no two change points are within a distance
equal to length of the longest cycle of each other. (This
constraint arises so as to avoid aliasing of frequencies due to
sparse data points in a time series.) For an initial choice of
model (here, sinusoidal) and number of subintervals
(change points), the algorithm produces the best possible
fit to the entirety of the data. It allows us to relax the
requirement of a fixed window that has been used in past
paleoclimatic analyses and replace it with the ability to use
windows of any size. The use of sinusoidal functions is not
new. Fourier based methods depend upon the sinusoid and
these functions have been shown to give a reasonable fit to
the data.
[12] The algorithm has three steps: (1) parameter fitting,

for each possible model (in this case, sinusoids) in each of
the N(N + 1)/2 subintervals of a time series of length N;
(2) the forward step, to find the minimum sum of square
residuals considering all possible positions of k change
points for the full time series and for all subintervals that
begin at time zero; and (3) the backtrace step, to identify the
solution (parameter set or argument) minimizing the sum of
square residuals, i.e., the optimal set of change points. We
begin with a series of time points tn = 1,2,. . .N that are not
necessarily equally spaced. At each of these points, the
measured value of the proxy of interest Ytn is available. We
also assume that we have M different models that are
proposed to fit the data. The following is a summary of
the computer code, the so-called pseudo code, used in each
of these steps.
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[13] Step 1 is parameter fitting for M periodic functions
with given frequency components:

for i = 1,. . .,N

for j = i + d,. . .,N

for m = 1,. . .,M

SSm
i;j ¼

a0; . . . ;ap

b1; . . . bp

Min

�
Xtj
t¼ti

Yt � a0 �
Xp
p¼1

ap sin wpt
� �

þ bp cos wpt
� � !2

8<
:

9=
;

end for

SSi;j ¼ MinfSS1i;j; . . . SSMi;j g

end for

end for

where wp is a specified frequency, SSi,j is the sum of square
residuals in the subinterval beginning at position ti and
ending at position tj, and d � 0 is the size of the smallest
permitted window. In cases where we want to consider M
different, distinct models, the inner loop will allow the
algorithm to find the minimum sum of square residuals for
each model individually before choosing the minimum
among all competing models.
[14] While our focus here is on Milankovitch cycles, this

procedure is applicable to a broad spectrum of fitting
functions. For least squares fit to a general fitting function
f (�jQ) with parameters Q step 1 becomes:

for i = 1,. . .,N

for j = i +d,. . .,N

for m = 1,. . .,M

SSmi;j ¼ Q
Min

Xtj
t¼ti

Yt � f Xi;t; . . .Xp;tjQ
�� �2( )

end for

SSi;j ¼ Min SS1i;j; . . . SS
M
i;j

n o

end for

end for

where Xi,t are a covariates, or ‘‘predictive variables’’. As
indicated next, the remaining two steps of this algorithm can
be completed for any function for which the necessary

minimizations can be completed to obtain SSi,j, i = 1,. . .,N
and j > i. Thus, f (�jQ)may be nonlinear. When a linear
function is employed, the well known explicit solutions of
linear regression equations can be employed to obtain the
required minima.
[15] The step just described fits the parameters and finds

the minimum sum of square residuals for every possible
subinterval. To find the optimal k change points, we find the
overall minimum sum of square residuals by optimally
piecing together (k + 1) subintervals that include each of
the N data points only once. There are a large number,
O(MNK), of ways to piece together subintervals (for each
value of k), so except for a short time series, this optimi-
zation cannot be completed by enumerating all of the

possibilities [A total of
PK max

k¼1

MNk solutions exist]. Instead,

dynamic programming, a recursive algorithm, addresses this
combinatoric explosion by breaking the problem into a
progressive set of smaller problems. In change point
analysis, this progressive set includes all substrings of the
sequence that begin with the first data point and end at all
time points from time 2 to time N. Optimal values, here the
minimum squared errors, are first obtained for the simplest
of these, the one change point problem. The stored values
from this first pass are then used to find the minimum
squared errors for all solutions with two change points and
these in turn for three change point models, and so on, until
the maximum number of change points, Kmax, has been
included. Upon completion of the forward step, minimum
squared errors for all subproblems have been obtained and
stored. Let fk(v) be the minimum sum of square deviations
for the subinterval from 1 to v with k change points. Note
that f1(v) = SS1,v .
[16] Step 2 is the forward step:

for k = 2,. . .K

for n = k,. . .,N

fkðtnÞ ¼v<tn
min fk�1 vð Þ þ SSvþ1;tn

� �
end for

end for

The forward step finds the minimum sum of square
residuals with up to Kmax change points, for the entire time
series and all possible subintervals. To find the locations of
the change points, we work backward. On the backtrace
step, the results from the forward step are employed to find
the optimal solution. The location of the Kth change point is
found by using the minimum squared error for the set of
subproblems with K – 1 change points. The remaining
change points are found recursively by stepping backward
in a similar manner. This means that we begin at the end of
the time series, find the location of the last change point,
and then recursively repeat this process with smaller values
of k and progressively shorter sequences using the stored
values from the forward procedure at each stage of the
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backward procedure. Let ck be the location of the kth
change point.
[17] Step 3 is the backtrace step:

cKþ1 ¼ tN

for k = K, K–1, . . .1

ck ¼ arg min
v 2 ½k � 1; ckþ1Þ

fk�1 vð Þ þ SSvþ1;ckþ1

� �

end for

These steps reduce the time requirements for this computa-
tion to O(MN2) for the parameter fitting step and O(KN) for
the forward and backward steps.

4. Applications and Results

[18] The change point algorithm was applied to two
different types of data sets. One data set is the orbitally
tuned 5-Ma-long isotope stack of Lisiecki and Raymo
[2005] (hereinafter referred to as LR05). Because orbital
tuning may induce a bias in the locations of the change
points, a second analysis was also done on a 2.5-Ma-long
data set that is free from orbital tuning [Huybers, 2007]
(hereinafter referred to as H07), an extension of Huybers
and Wunsch [2005]. The H07 approach pays the price of its
freedom from orbital tuning by adding considerable age
uncertainties in regions distant from absolute age control
points. To address this uncertainty, several realizations of
plausible age models would have to be simulated and
independently tested by the change point algorithm to
ensure that results are not due to stochastic fluctuations.
This type of analysis is beyond the scope of this paper and
we chose not to weigh in on the merits of one type of data
set over the other.
[19] The two data sets are quite similar. As Huybers

[2007] points out, the differences between the ages of the
two models has a standard deviation of only 6 ka, which is
less than the expected uncertainty for the depth-derived
ages. There are however, two important differences. Prior to
600 ka, the sampling densities of the two data sets are
different. H07 has data points corresponding to every 1 ka,
while LR05 has data points spaced every 2 ka from 600 ka
to 1500 ka, and then every 2.5 ka from 1500 ka to the end of
the H07 data set. Second, a circa 100 ka pulse is seen in the
H07 data at 2 Ma that is not found in LR05. Accordingly,
the change point algorithm will bound this interval with a
pair of change points when the 100 ka sinusoid is utilized in
a model. A comparison of the results from the algorithm on
the two published data sets is given below in section 4.2.
This type of comparison provides insight into the most
important changes of the climate system that are visible
across different models and across different data sets.
[20] The first step for either data set is to remove the

overall trend from the data via an exponential function so
that the change points represent changes in the Earth’s
response to orbital inputs rather than the cooling and

long-term Plio-Pleistocene trend toward increased ice
volume (see Figures 1a and 1b).
[21] All analyses described here include change points

associated not only with changes in the dominant frequen-
cies, but also changes in the amplitude and phase parame-
ters for a given frequency. The phase parameter takes values
between �180� and +180� and gives the phase shift of the
sinusoidal functions relative to time 0 (present day). This
choice was arbitrary and has no bearing on the final results.
The results are identical if we choose t1 to be the most
recent or the most distant time point. The amplitudes are in
d18O units. Here and in the remainder of this study, we
constrained the minimum interval length to be at least as
large as the longest wavelength included in the regression
model. Because of the nature of the algorithm, all change
points will represent an abrupt or discrete change in the
system when considered in isolation. However, gradual
changes can be realized when the change points and
resulting model parameters are viewed in context. Several
nearby change points that show slowly varying or stepwise
changes in parameter values are indicative of a gradual
change in the system.
[22] There is a marked decrease in the variability prior to

about 2500 ka (Figure 1b). Accordingly, change points
before 2500 ka are less likely since there is less squared
variation to account for. Therefore, in addition to an analysis
directly on the detrended data shown in Figure 1b, we
conducted a ‘‘weighted’’ least squares analysis. After com-
pleting step 1 on each subinterval, we weighted subintervals
by 1/variance around the mean of that interval prior to
application of steps 2 and 3 (Figure 1c). In general, we
found that this weighting made little difference except
between �2400 and �2700 ka, where an additional change
point was located in this region in the weighted analysis
compared to the unweighted analysis, and within the
‘‘transition interval’’ �800 to �1200 ka discussed below,
where we saw a shift in the location of the change points.
Here, we present the weighted analysis while referring the
reader to the unweighted analysis located in the auxiliary
material.1

4.1. Dominant Frequency Analysis

[23] We begin our analysis by examining the LR05 time
series and addressing the traditional problem of identifi-
cation of the single dominant orbital frequency in each
subinterval, selecting in each subinterval only one of the
three sinusoidal functions: ‘‘eccentricity’’ (100 ka), obliq-
uity (41 ka), or precession (23 ka). This is an example of
the above pseudocode with M = 3. Strong support for the
existence of these frequencies within at least some region
of the data already exists through conventional Fourier
analysis. Other sinusoidal functions could also have been
chosen. The choice of 100 ka to represent eccentricity was
based on the empirical power of a circa 100 ka cycle
during the late Pleistocene. This model is a first attempt
to explain the data and serves primarily as a comparison
to spectral analysis techniques that have been used in
paleoclimatology.

1Auxiliary materials are available in the HTML. doi:10.1029/
2007PA001568.
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[24] There is no statistically rigorous method to determine
the number of change points required in a least squares
analysis. As an alternative, we examined changes in squared
error as a function of the number of change points in an
effort to identify the ‘‘break in the curve’’, beyond which
adding more change points yields little improvement in
fitting the data. For the analysis of dominant frequencies,
we used four change points (Figure 2a).
[25] Our dominant frequency analysis indicates that the

most recent 1 Ma exhibit a more complex pattern requiring
more change points than the previous 4 Ma, even in the
weighted analysis. Thus, as shown in Table 1, when four
change points are selected, three are between 778 ka and the
present (113 ka, 424 ka and 778 ka) and the regimes bounded
by these change points are dominated by the 100 ka cycle
with changes in the amplitude and phase parameters. Figure 3
shows the observed data and the fitted functions. We find a
change point near the minimum permitted length for the most
recent interval, here at 113 ka.Whenwe relaxed theminimum
length constraint, we consistently found that the most recent
80 ka includes a change point that seeks to capture an unusual
pattern of the recent past. The change point at �780 ka
persists throughout the subsequent analyses (Tables 2–4).
The two intervals prior to�780 ka (780–2713 ka and 2715–
5320 ka) are both best fit by the obliquity forcing function
with a threefold change in the amplitude of the obliquity
response at about 2713 ka (Table 1). Only the influences of
the 41 ka (obliquity) and 100 ka (eccentricity?) forcing
functions are inferred over the entire time series. The un-

weighted analysis with four change points yields similar
results to the weighted analysis, with change points at 113,
425, 786, and 2703 ka, and an R2 value that is less than half a
percent greater than the weighted least squares, 0.465.
Complete details of the unweighted analysis are presented
in the auxiliary material.
[26] Over the full 5320 ka interval, less than half [0.462] of

the squared variation (R2) in the ratio of oxygen isotope
values is accounted for by the best fit of a single dominant
‘‘Milankovitch’’ frequency in 5 subintervals (Table 1). Fur-
thermore, in the interval from 2715 ka to 5320 ka only 18% of
the squared variation is accounted for by the best fitting of
these functions (Table 1). Table 1 illustrates the ability of the
algorithm to identify dominant frequencies without the
required restrictions on window size. Increasing the number
of change points provides a better fit, but doubling the
number of change points (to 8) only increases the total R2

value to 0.521. Reducing the number of change points to 2,
corresponding to the two well-recognized changes in the
behavior of Plio-Pleistocene glaciation (the mid-Pleistocene
transition (�900 ka) and the intensification of Northern
Hemisphere glaciation �2.7 Ma) returns changes at 692 ka
and 2713 ka, but an R2 value of only 0.357.
[27] In the two change point analysis, the mid-Pleistocene

change occurs at 692 ka in comparison to its location at
778 ka in the four change point analysis. The movement of
the location of change points when additional change points
are added to the analysis is not unexpected. For example,
suppose that the data contained more ‘‘changes’’ than the

Figure 1. Benthic d18O data. (a) The original d18O data as obtained from Lisiecki and Raymo [2005].
(b) The d18O data after the overall trend was removed using an exponential function. (c) The detrended
data after a weight was applied to each subinterval. The subintervals were selected by the change point
algorithm when the input was the linear combination of the Milankovitch frequencies (actual change
points given in Table 2). The weight used was 1/(standard deviation) of that subinterval.
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number of change points the algorithm was asked to find. If
this were the case, a single subinterval may have to account
for several inhomogeneous regions within its bounds and
would thus average the parameter values across these
inhomogeneous regions. With an appropriate number of
change points, each subinterval truly has homogeneous
parameter values within its bounds.
[28] We were also concerned that our results might be

sensitive to the precise frequency chosen for the circa 100 ka
glacial cycle. To address this concern, the single dominant
frequency analysis was also separately run using 95 ka and
104 ka cycles instead of the 100 ka cycle. When the 95 ka

cycle was used instead of the 100 ka cycle, the change
points were located at time positions 112, 788, 916, and
2713 ka, with a total R2 value of 0.449, a 1.5% reduction.
As was true for the analysis using a 100 ka sinusoid, the
circa 100 ka cycle, in this case the 95 ka term, dominates
(i.e., best fits) the three most recent intervals, while the 41 ka
cycle best fits the other two intervals. When using the 104 ka
cycle instead of the 100 ka cycle, the change points occur at
time positions 423, 792, 1216, and 2715, with a total R2

value of 0.422, a 4.3% reduction. Again, the circa 100 ka
cycle dominates the most recent three intervals (0–1216 ka),
while the 41 ka cycle dominates the other two (1218–

Figure 2. Amount of squared residual accounted for by each successive change point. The slope of the
squared error curve as a function of the number of change points: (a) the change in the residual sum of
squares with the addition of each successive change point for the weighted analysis of the single dominant
frequency and (b) the change in the residual sum of squares with the addition of each successive change
point for the weighted analysis of linear combinations of the Milankovitch frequencies. The ‘‘break in the
curve’’ corresponds to a change in the slope of the squared error curve.

Table 1. Single Dominant Frequencya

Subintervals Dominant Period (ka) Amplitude (d18O) Phase Constant (a) R2

1 to 113 100 0.4584 �150.78 0.1435 0.5368
114 to 424 100 0.5049 141.47 �0.0804 0.566
425 to 778 100 0.412 �160.20 0.021 0.5218
780 to 2713 41 0.2188 158.78 0.037 0.2895
2715 to 5320 41 0.0896 �156.12 �0.0468 0.1828

aThe single dominant frequency (LR05) in each of five subintervals using only the three Milankovitch frequencies: 23, 41,
and 100 ka, with the constraint that the minimal subinterval length be at least as long as the longest wave in the analysis
(100 ka). The amplitude is given in d18O units, the phase is given in degrees from –180 to 180, and the R2 values are the
percent of the squared variation that a single sinusoid is able to account for on its own. Total R2 = 0.4615.
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5320 ka). Importantly, throughout this range of candidate
eccentricity frequencies, the change points at �790 ka and
�2715 ka remain unchanged. Our modeling of circa 100 ka
behavior in glaciation over the past 5 Ma is therefore
quite reliable, whatever our limitations on its interpretation
may be.

4.2. Linear Combinations Analysis

[29] Next we consider models with linear combinations of
sinusoidal functions of the three classic Milankovitch fre-
quencies (100, 41, and 23 ka). This is a special case of the
above pseudocode with M = 1. In this section, we analyze
both the 5 Ma orbitally tuned benthic d18O LR05 data set as
well as the 2.5 Ma nonorbitally tuned benthic d18O H07
data set. The goal of this section is not only to compare the

results of the change point algorithm on the two data sets,
but to be able to draw inferences that are independent of the
age models used. We begin our discussion with an analysis
of the LR05 data set.
[30] In this analysis, we increased the number of change

points to seven to show a more nuanced result (Figure 4 and
Table 2). Change points occur at 102 ka, 380 ka, 786 ka,
1030 ka, 1198 ka, 2418 ka, and 2713 ka. Five of the seven
change points occur between the early onset of the mid-
Pleistocene transition identified in the literature �1500 ka
[Rutherford and D’Hondt, 2000] and the present, while the
remaining two change points occur near the intensification
of Northern Hemisphere glaciation �2.7 Ma. As shown in
the auxiliary material, adding up to 10 change points does

Figure 3. Benthic d18O data plotted versus proposed model with change points indicated: single
dominant frequency (LR05). The least squares fit for the single dominant Milankovitch based cycle in
each subinterval. The data are plotted in blue, the proposed model is plotted in green, and the change
points are plotted as red spikes at the bottom. The data shown are the original data after the trend was
removed. The change points were selected using the weighted least squares approach but are plotted
against the unweighted data.

Table 2. Linear Combinations of Milankovitch Frequenciesa

Subintervals

23 ka 41 ka 100 ka

Constant (a)Amplitude Phase Amplitude Phase Amplitude Phase

1 to 102 0.2043 71.68 0.2986 146.18 0.376 �147.34 0.1797
103 to 380 0.1962 39.51 0.2916 –161.88 0.4354 133.52 –0.0209
381 to 786 0.0344 �158.14 0.2569 �164.03 0.4675 �169.64 �0.0303
788 to 1030 0.1431 28.07 0.2002 178.88 0.2761 13.61 �0.0492
1032 to 1198 0.0925 14.63 0.1281 139.93 0.3148 �82.71 �0.0154
1200 to 2418 0.0292 �129.26 0.225 152.78 0.0553 102.22 0.0402
2420 to 2713 0.0273 29.12 0.2588 162.55 0.184 �65.01 0.177
2715 to 5320 0.012 �172.05 0.0893 �156.22 0.0293 �15.29 �0.0467

aLinear combinations of Milankovitch frequencies (LR05): 23, 41, and 100 ka. The seven change points selected by the algorithm yield eight
subintervals with corresponding amplitude and phase parameters for each of the three input sinusoids in each subinterval. The amplitudes are given in d18O
units, and the phase is given in degrees from –180 to 180. Once again, a constraint was imposed that the minimum subinterval length be at least as long as
the longest wave in the analysis (100 ka). Total R2 = 0.6641.
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not relocate six of the seven change points and moves the
seventh change point by only 2 ka.
[31] To better understand the contributions of each of

the Milankovitch terms to each subinterval (i.e., climate
regime), we examine the contributions of all subsets of
Milankovitch terms to the proportion of squared variation
(R2) accounted for in each of the predicted subintervals,
with the seven change point locations fixed to those in
Table 2 (Table 3). An asterisk indicates the subset of
Milankovitch sinusoids that accounts for the most variance
in each subinterval. The contribution of the precession-
based term is small compared to the obliquity and eccen-
tricity terms (Table 3).
[32] The amplitude of the obliquity-driven glacial cycle

has a roughly constant magnitude from 2715 ka to the
present, even though it is not the dominant frequency for the
past 1.2 Ma (Table 2). Prior to 1.2 Ma, the obliquity term
dominates while the other two terms add little to the overall
fit. This result is robust against the selection of the number
of change points, as opting for fewer (5) or more (10)
change points yields similar results. While the obliquity
response dominates in the interval 2420 ka to 2713 ka, the
amplitude of the eccentricity based function increases
relative to adjoining intervals. It is perhaps not coincidental
that this �300 ka interval of mixed spectral behavior
follows immediately after the significant increase in the
amplitude of glacial cycles at about 2713 ka. In all cases,
the amplitude of the obliquity based function was nearly
threefold lower before 2715 ka ago, consistent with the

absence of large Northern Hemisphere glaciers and their
associated feedbacks during this interval [cf. Shackleton et
al., 1984]. In this interval, we see that all three sinusoids
together are only able to account for just over 20% of the
squared variation of the d18O data. We concede that our
statistics concerning the dominance of obliquity forcing
may be biased by the obliquity-based tuning procedure
used by Lisiecki and Raymo [2005] to date the d18O record.
However, despite the fact that Lisiecki and Raymo [2005]
also included precession in their tuning procedure, the 23 ka
cycle never plays an important role in the change points we
identified, and never explains a large fraction of the vari-
ance in our models.
[33] In the last 1200 ka, the eccentricity-based term is the

‘‘dominant’’ cycle because it is able to account for the most
squared variation in each of these subintervals. The 100 ka
based cycle shows a marked increase in amplitude begin-
ning 1198 ka ago (Table 2). The amplitude further increases
at 786 ka. Thus, the time between roughly 1200 ka and
800 ka could be considered a ‘‘transition interval’’. When
we increased the number of change points in the single
dominant frequency analysis from four to seven, the 100 ka
cycle dominates from 1200 ka to the present. Thus, the
extension of the interval in which eccentricity is dominant,
stems from the inclusion of three additional change points,
again suggesting that the interval between �780 ka and
�1200 ka is a transition interval.
[34] In the most recent 5 subintervals (0–1198 ka), the

addition of the obliquity term to the 100 ka term improves

Table 3. Percent of Squared Residual Accounted for by Each Subset of Inputsa

Subintervals 23 41 100 23, 41 41, 100 23, 100 23, 41, 100

1 to 102 0.1384 0.3589 0.5207* 0.5013 0.7222* 0.6171 0.8233
103 to 380 0.0862 0.198 0.4908* 0.291 0.6952* 0.5818 0.7923
381 to 786 0.0044 0.1546 0.5367* 0.16 0.7* 0.5389 0.7029
788 to 1030 0.0934 0.2313 0.3557* 0.31 0.5356* 0.4548 0.6206
1032 to 1198 0.0561 0.0764 0.5055* 0.1405 0.5876* 0.5451 0.6356
1200 to 2418 0.0063 0.3739* 0.0211 0.3804 0.3969* 0.0273 0.4032
2420 to 2713 0.0086 0.4348* 0.1905 0.4392 0.6636* 0.2006 0.6688
2715 to 5320 0.0036 0.1828* 0.0204 0.1861 0.2023* 0.024 0.2056

aGiven the location of the seven change points from the linear combination of Milankovitch frequencies (Table 2), we look at the amount of squared
variation (R2) that each subset of sinusoids is able to account for (LR05). For a given number of sinusoids included in the model, the subset that accounts
for the most squared variation is indicated with an asterisk.

Table 4. Parameters for Linear Combinations of Milankovitch Frequenciesa

Subintervals

23 ka 41 ka 100 ka

Constant (a)Amplitude Phase Amplitude Phase Amplitude Phase

1 to 791 0.0722 7.71 0.1467 50.38 0.434 13.50 �0.0106
792 to 1195 0.0584 72.26 0.1782 19.57 0.1793 2.96 0.0339
1196 to 1700 0.0291 �26.85 0.2521 39.84 0.0431 �52.44 �0.0264
1701 to 1990 0.0273 34.89 0.2003 �36.07 0.0445 37.32 0.0544
1991 to 2103 0.0805 26.96 0.0774 89.58 0.2362 51.11 0.0719
2104 to 2331 0.0146 45.11 0.176 29.45 0.0206 �77.50 �0.0877
2332 to 2580 0.0367 �59.36 0.2101 �6.77 0.1574 76.38 0.0189

aLinear combinations of Milankovitch frequencies (H07): 23, 41, and 100 ka. The six change points selected by the algorithm yield seven subintervals
with corresponding amplitude and phase parameters for each of the three input sinusoids in each subinterval. The amplitudes are given in d18O units, and
the phase is in degrees from –180 to 180. A constraint was imposed that the minimum subinterval length be at least as long as the longest wave in the
analysis (100 ka). Total R2 = 0.5680.
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the fit by over 16% in all subintervals with the exception of
1032–1198 ka where the fit is improved by 8%. Also, we
note that the contribution to squared error is nearly additive
(i.e., adding together the R2 values for the 41 ka and 100 ka
individually, gives the R2 for the combination 41 ka and
100 ka subset), suggesting that the sinusoidal waves are
nearly orthogonal [Bretthorst, 1988]. When the frequencies
are different, all sinusoids of infinite lengths will be
orthogonal; in this case, we are dealing with sometimes
short segments so that orthogonality cannot be assumed.
[35] For 6 of the 8 intervals, the constant term is close to

zero as expected after detrending, but not so for the other
two intervals. For the most recent 102 ka, the constant is
0.179. This is consistent with higher d18O levels associated
with the well reported greater glacial maximum in this
interval. Also, in the interval 2420 ka to 2713 ka, the
constant has a value of 0.177, perhaps indicating greater
average ice volume in this interval relative to adjoining
intervals.
[36] In total, 66% of the total unweighted squared varia-

tion in these data can be fit by the three sinusoidal functions
in the indicated eight subintervals. As there is clear evidence
that the climate behavior at the orbital periods is not linear
[Ashkenazy and Tziperman, 2004; King, 1996], our simple
model undoubtedly underestimates the total fraction of
climate variance paced by orbital forcing through the Plio-
cene and Pleistocene. At the same time, some of the variation
explained by the model may be byproduct of the orbital
tuning of the data set.

[37] The nonorbitally tuned H07 data set provides us with
a different set of change points than does the LR05 data set
(Table 4). To aid the comparison, we sought the six optimal
change points as the seventh change point in the LR05 data
set falls outside of the timeframe of the H07 data set. In total,
the change point algorithm with six change points for the
linear combination of Milankovitch frequencies was able to
account for 56.8% of the squared variation in the data, nearly
10% less than in the LR05 data set. This difference may be
attributable to orbital tuning and the inclusion of a 41 ka
sinusoid in the model being tested. Two of the six change
points are at nearly identical spots, �788 ka and �1200 ka.
The fact that these two change points appear in both data sets
strongly indicates that major changes occurred at these
times. The biggest difference between the change points
locations in the two data sets was in their clustering. In the
H07 data set, the majority of the six change points are
located prior to 1200 ka (Figure 5); in the LR05 data set, a
majority of the change points are located after 1200 ka. We
caution that the two data sets have different sampling
densities at 2 Ma and that we cannot rule this out as one
possible cause of this discrepancy.
[38] As with the LR05 data set, in H07, we see a stepwise

increase in the amplitude of the 100 ka cycle at 1200 ka and
again at�790 ka. In the H07 data set, after 1200 ka the 41 ka
cycle remains an important component to the system, albeit
subordinate to the 100 ka cycle. Because the data set is not
orbitally tuned, we no longer see the phase locking of the
41 ka cycle that was present in the LR05 data set. However,
the change in phase remains small (less than 30�) except

Figure 4. Benthic d18O data plotted versus proposed model with change points indicated: linear
combinations of Milankovitch frequencies (LR05). The least squares fit for the linear combination of the
three Milankovitch based cycles and a constant term with seven change points. The actual data are in
blue, the proposed model is in green, and the red spikes at the bottom represent the optimal locations of
change points selected by the algorithm.
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between 1700 and 2103 ka. The change point at 1700 ka
deserves special attention. It appears that this change point is
a result of a phase shift rather than an amplitude change of
any of the three model components. It is plausible that this
change point arises from age model uncertainty. The interval
from 1991 to 2103 ka is an anomaly compared to the
subintervals that surround it. In this interval, we see the
relative weakness of the 41 ka signal and the emergence of a
longer-period signal, a combination that is absent from the
LR05 stack at this same time period. Accordingly, the
change point algorithm picks out this interval as distinct
from its neighbors. Finally, as with the LR05 data set, the
precessional component is only a minor contributor through-
out the time series.
[39] Looking more closely at the change points obtained

from the H07 data set, we see that half of them fall near
magnetic reversals, boundaries which were used to define
the H07 age model: 780*, 990, 1070, 1770*, 1950*, and
2580 ka. The only change point in the LR05 time series that
coincides with a magnetic reversal is the timing of the onset
of the 100 ka regime at �790 ka. It thus seems likely that in
the case of the H07 data set, the change point method
detects shifts in amplitude or phase of glacial cycles which
are at least partly an artifact of how the time scale was
derived.

4.3. The ‘‘100 ka’’ Cycle Analysis

[40] A recent study [Huybers and Wunsch, 2005] suggests
that the 100 ka cycle conventionally attributed to orbital
eccentricity (in some form) may stem instead from nonlinear

climate system responses to the obliquity forcing. Nonlinear
interactions of an obliquity response with strong feedbacks,
such as the adjustment of large ice sheets and/or the extent of
sea ice, might generate periodicities in glacial cycles near the
observed 100 ka period. In particular, the transition to circa
100 ka glacial cycles might resemble the ‘‘Devil’s staircase’’
transition in nonlinear systems [Jin et al., 1994], where
subharmonics (rational number multiples of the fundamental
period) may dominate the overall response of the system [Liu
et al., 2008].
[41] To examine this question, we compare the ability of

three different models to fit both the LR05 and H07 data sets:
(1) ‘‘classic Milankovitch’’, 23, 41, and 100 ka; (2) ‘‘sub-
harmonics of obliquity’’, 41, 82, and 123 ka; and (3) ‘‘alter-
nate 100 ka’’, 41, 95, and 124 ka. The ‘‘classic Milankovitch’’
model is the same model that was just discussed. The 95 ka
and 124 ka components of the ‘‘alternate 100 ka’’ model were
chosen because they represent two of the major spectral
components of the eccentricity function [Berger and Loutre,
1991]. The hypothesis that we wish to examine is whether or
not the ‘‘classic Milankovitch’’ model fits the data as well or
better than two alternative models for ice volume. In order to
keep the model complexities the same, the number of change
points was held fixed at seven and only three sinusoidal
components were included in each model. As a result, the
precession sinusoid was left out of both the ‘‘subharmonics of
obliquity’’ and the ‘‘alternate 100 ka’’ models. Our aim is
twofold: (1) to determine which model provides the best
overall fit to the data and (2) to look for similarities in the
change point locations across the three models in order to

Figure 5. Benthic d18O data plotted versus proposed model with change points indicated: linear
combinations of Milankovitch frequencies (H07). The least squares fit for the linear combination of the
three Milankovitch-based cycles and a constant term with six change points. The actual data are in blue,
the proposed model is in green, and the red spikes at the bottom represent the optimal locations of change
points selected by the algorithm.
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discover changes in the time series that are independent of the
functions used to model the data.
[42] We first compared the proportion of the variance (R2)

accounted for by each of the competing models on the LR05
data set. When seven change points were used, the ‘‘sub-
harmonics of obliquity’’ model was able to account for
66.9% of the squared variation in the data, while the ‘‘classic
Milankovitch’’ and ‘‘alternate 100 ka’’ models were able to
account for 66.4% and 65.6% of the squared variation,
respectively. In essence, all fit the data nearly equally well.
From a practical standpoint, these models would appear to be
nearly equivalent in their ability to represent the d18O data,
even though two of the three models leave out precession, a
minor but still important component. Inclusion of the pre-
cession term in the model increases the R2 values for the
‘‘subharmonics of obliquity’’ and ‘‘alternate 100 ka’’ to
0.699 and 0.684, respectively. One must caution reading
too much into the improvement in fit. These models now
have two extra parameters (amplitude and phase of the 4th
sinusoidal input) with which to fit the data.
[43] We also examined these three models and their fit to

the H07 data. As before, in order to keep the model
complexities the same, the number of change points was
held fixed at six as the seventh change point in LR05
falls outside of the temporal range of the H07 data set.
When six change points were used, the ‘‘subharmonics of
obliquity’’ model was able to account for 64.2% of the
squared variation in the data. The ‘‘classic Milankovitch’’
and ‘‘alternate 100 ka’’ models were able to account for
56.8% and 55.9% of the squared variation, respectively. In
contrast to the LR05 data set, it appears that one of the
models, ‘‘subharmonics of obliquity’’, substantially outper-
forms the other two models. Our analysis therefore supports
the recent suggestion [Huybers and Wunsch, 2005; Huybers,
2007] that obliquity related terms describe the quasiperiodic
components of glacial-interglacial change since the intensi-
fication of Northern Hemisphere glaciation at least as well as
the traditional model.
[44] The change point locations for each of the three

models on the LR05 data set are as follows: (1) subharmonics
of obliquity, 263, 586, 1030, 1240, 1950, 2272, and 2713 ka;
(2) classic Milankovitch, 102, 380, 786, 1030, 1198, 2418,
and 2713 ka; and (3) alternate 100 ka, 118, 790, 1030, 1202,
1698, 2485, and 2878 ka. One of the most interesting details
about the locations of the change points in the three models
is the commonalities that exist between the three sets. There
is one change point that appears exactly in all three models,
1030 ka, and others that are similar in at least two of the three
models: �788, �1200, �2450, and �2713 ka. The impor-
tance of these times is highlighted by their inclusion in the
optimal change point sets across multiple models. Interest-
ingly, these common change point locations occur during the
mid-Pleistocene transition, between 0.8 Ma and 1.2 Ma, and
at the onset of the intensification of Northern Hemisphere
glaciation around 2.7 Ma. Complete details of these two
models with corresponding parameter values can be found in
the auxiliary material.
[45] As previously mentioned, the change point locations

for each of the three models on the H07 data set were
somewhat different from their corresponding models on the

LR05 data set: (1) subharmonics of obliquity, 262, 532,
1104, 1224, 2090, and 2303 ka; (2) classic Milankovitch,
791, 1195, 1700, 1990, 2103, and 233l ka; and (3) alternate
100 ka, 794, 1026, 1195, 1699, 1977, and 2337 ka. The
change points for the ‘‘classic Milankovitch’’ and the ‘‘al-
ternate 100 ka’’ models are very similar to each other on this
data set (five of the six change points are within 13 ka of
each other), but different from those of the ‘‘subharmonics of
obliquity’’ model and different from their counterparts in the
LR05 data set. On the other hand, the change points for the
‘‘subharmonics of obliquity’’ are similar in both data sets.
There are two similarities across the three models on the
H07 data set, namely the change points at �1200 ka and
�2330 ka. Also of note is the change point found �790 ka
in two of the three models. This change point was also
found both in the analysis on the LR05 data set and in the
analysis on the single dominant frequency.

5. Evaluation

[46] Using the well-established ‘‘principle of optimality’’
[Bellman, 1957], we describe a general change point algo-
rithm for the characterization of paleoclimatic time series
and illustrate its application to the analysis of d18O data for
the identification of the Earth system’s response to Milan-
kovitch forcing. The algorithm’s novel characteristics are
(1) globally optimal least squares fitting to a time series with
windows of arbitrary size for a specified number of change
points; (2) fitting of time series with combinations of
predictor variables; and (3) applicability with any fitting
function, linear or nonlinear. We presented an application of
the change point method tailored to evaluating climate
change on Ma time scales, but note that the method may
be equally viable in the detection of significant changes in
climate behavior on other time scales, including those
induced by human activity.
[47] The strongest evidence for the utility of this algo-

rithm in paleoclimatology comes from its confirmation of
previously identified first-order spectral changes in Plio-
Pleistocene d18O records, identification of the consistent
importance of obliquity forcing throughout the Plio-Pleis-
tocene, and demonstration that obliquity and its subhar-
monics as well as an alternate representation of the
empirically derived 100 ka cycle fit the d18O record as well
if not better than the traditional Milankovitch model [cf.
Hays et al., 1976]. This last result suggests that the use of
the empirical 100 ka cycle may no longer be required. Using
the LR05 data set as an example, the most important change
points correspond to the intensification of Northern Hemi-
sphere glaciation at about 2.7 Ma [Shackleton et al., 1984]
and to the mid-Pleistocene onset of large 100 ka glacial
cycles (Tables 1–3). The 2.7 Ma change point comes not
from a switch in the dominant periodicity (the 41 ka cycle
dominates the orbital component of d18O change for more
than 2 Ma before the change point and for nearly 2 Ma
after), but from a significant increase in the amplitude of the
41 ka component in the d18O time series after 2.7 Ma and is
associated with a large increase in the amount of variance
explained by an orbital model for d18O change. Because the
time series was weighted by the variance of each subinter-
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val, the 2.7 Ma change point arises largely from the
increased signal-to-noise ratio of the 41 ka component of
benthic d18O after 2.7 Ma. Also, it appears that the 23 ka
precessional component of ice volume strengthened signif-
icantly after 2.7 Ma, although it is always subordinate to the
41 ka obliquity cycle and accounts for only a very small
portion of the variance throughout the time series (Table 3).
[48] Idealized as the transition from one dominant peri-

odicity of glacial cycles to the next, the mid-Pleistocene
transition occurred at about 0.788 Ma in both the LR05 and
H07 analyses (Tables 1, 2, and 4), on the young side of most
published analyses [Park and Maasch, 1993; Rutherford
and D’Hondt, 2000]. However, a more complex represen-
tation of the d18O time series as sums of orbital terms
(Table 3) displays interesting behavior during the transition
from the ‘‘41 ka’’ world to the ‘‘100 ka’’ world. Two short
(circa 200 ka) intervals between 0.788 and 1.2 Ma emerge
from the LR05 data. These relatively short intervals may
correspond to the apparently stepped transition from 41 ka
to 100 ka dominated cycles detected by Mudelsee and
Schulz [1997], in which the authors found that an increase
in average ice volume preceded the spectral shift to 100 ka
glacial cycles by more than 200 ka. In our analysis of the
earlier (1.2 Ma) break point, the amplitude of the 41 ka
cycle drops significantly at the same time that the strength
of the 100 ka component of glaciation rises steeply. This dip
in the obliquity component exists only for a single subin-
terval, from 1032 ka to 1198 ka, before returning to its
previous level (Table 2). The younger bound for the mid-
Pleistocene transition, 0.788 Ma, corresponds to the time
after which the strength of the 100 ka cycle is nearly
constant, a result echoed by the H07 data set. The mid-
Pleistocene transition is also associated with a stepwise
increase in the 23 ka precessional component (Tables 2
and 4). However, the 23 ka precessional sinusoid remains
the least important of the three model components in terms
of its amplitude (in both data sets) throughout the entire
time period analyzed (Tables 2 and 4).
[49] Change point analysis of LR05 also suggests that

climatic break points become more frequent toward the
present. If the LR05 age model is robust, our analysis
suggests that the climate system lurched more often as the
intensity of glaciations increased in the late Pleistocene. The
increasingly unstable pattern of glacial-interglacial cycles,
evident by the large number of change points after the mid-
Pleistocene transition in the LR05 data set, may indicate that
the climate has drifted into a progressively more nonlinear
state over time, and/or that new feedbacks have arisen in the
late Pleistocene that significantly alter the frequency and
amplitude behavior of the d18O time series. Paradoxically, the
amount of variance explained by a simple sum of ‘‘Milanko-
vitch’’ sinusoids increases dramatically toward the present
(Table 3). This observation suggests that the larger amplitude
glacial cycles of the late Pleistocene are better fit by finite
length sinusoids than their early Pleistocene and Pliocene
counterparts. The tendency of internal feedbacks to resonate
at or near orbital periodicities may therefore have grown over
time (see Ashkenazy and Tziperman [2004] for examples of
how ice age cycle could become phase locked to orbital
forcing).

[50] On the other hand, change point analysis of H07
suggests that the time around 2 Ma was more rugged.
However, climate related inferences based on the H07 data
set are limited because the model did not fit the data as well
as it did the LR05 data set and because several of the change
points may be artifacts of how the age model was determined
(Tables 2 and 4). When comparing the results obtained from
the orbitally tuned LR05 data set to the nonorbitally tuned
H07 data set, two change points (788 ka and 1198 ka) appear
in both data sets. Further comparisons between the two data
sets are hindered by the differing sampling density around
2 Ma and the appearance of numerous changes in the H07
around magnetic reversals.

6. Caveats and Future Work

[51] The approach described here does have some impor-
tant limitations. Thus, some caveats are in order. All of the
models that were used in this analysis were assumed to be
sinusoidal functions on the basis of the idea that climate
change is the result of external forcing (i.e., solar insolation
and Milankovitch Theory). However, the use of sinusoidal
functions is not new as it is used for Fourier based methods
as well. As discussed earlier, the change point algorithm can
be adapted to more complex model functions. With respect
to the near 100 ka cycle, it may be that this phenomenon
originates from internal feedbacks in the climate system
rather than external eccentricity forcing. The 100 ka term
was included in the analysis because of its empirical
significance in the d18O record.
[52] The change point algorithm in its current form is an

example of interrupted regression [Marsh and Cormier,
2001] and thus does not have a continuity constraint.
Therefore, the algorithm allows for both gradual and abrupt
changes to take place. If continuity is desired, spline
regression techniques can instead be used, but the problem
then becomes nonlinear in its parameters and approximation
techniques must instead be used [Marsh and Cormier,
2001]. Typically, the optimization is a very hard problem
[Lee, 2002] and dynamic programming is not available to
deal with this circumstance.
[53] One of the most important limitations of this algo-

rithm is the lack of a rigorous method to infer the number of
change points in a time series, leading to a need to examine
the robustness of a study’s conclusions against variations in
this number. We find our major conclusions are insensitive to
small variations in the number of change points (2–3 fewer/
more). Drastic differences in this number would inevitably
alter the results. Another important limitation of the present
analysis is the absence of information concerning uncertainly
in change point locations. With the current algorithm, it is
not possible to distinguish between change points whose
specific location is strongly supported by the available data,
from those in which there may be considerable uncertainly
about the exact timing of a change. It is possible that another
set or several other sets of change points are almost as good
as the optimal set returned by the algorithm. As a conse-
quence, the ability of the algorithm to explore the rapidity of
change is limited. Fortunately, a Bayesian approach, similar
to that employed by Liu and Lawrence [1999], is available to
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address this limitation, and to draw inferences from multi-
variate proxy data. By creating a probability distribution on
the data and the parameters, we can draw sample solutions in
proportion to their probability. Instead of returning the
unique global optimum, the Bayesian approach returns an
ensemble of solutions from which to draw inferences. The
variability of these sampled solutions will give insight into
the uncertainty in the number of change points, their loca-
tions, and the values of the parameters in the model. In the
future, we intend to explore the rapidity of Plio-Pleistocene
regime shifts using the Bayesian approach.
[54] Finally, it is clear that the results of the change point

method will depend upon the choice of an initial model for

ice age behavior; the present analysis is a point of departure,
not a solution of the many enigmas of the ice ages. Our
method does allow for a more formal and flexible study of
transitions or breaks in time series than previously attemp-
ted, with the innovation of flexibility in window sizes and in
subsequent modeling functions.
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