
A-24 Appendix A Assemblers, Linkers, and the SPIM Simulator

the stack pointer. The executing procedure uses the frame pointer to quickly
access values in its stack frame. For example, an argument in the stack frame can
be loaded into register $v0 with the instruction

 lw $v0, 0($fp)

 Register name Number Usage

 $zero 00 constant 0

 $at 01 reserved for assembler

 $v0 02 expression evaluation and results of a function

 $v1 03 expression evaluation and results of a function

 $a0 04 argument 1

 $a1 05 argument 2

 $a2 06 argument 3

 $a3 07 argument 4

 $t0 08 temporary (not preserved across call)

 $t1 09 temporary (not preserved across call)

 $t2 10 temporary (not preserved across call)

 $t3 11 temporary (not preserved across call)

 $t4 12 temporary (not preserved across call)

 $t5 13 temporary (not preserved across call)

 $t6 14 temporary (not preserved across call)

 $t7 15 temporary (not preserved across call)

 $s0 16 saved temporary (preserved across call)

 $s1 17 saved temporary (preserved across call)

 $s2 18 saved temporary (preserved across call)

 $s3 19 saved temporary (preserved across call)

 $s4 20 saved temporary (preserved across call)

 $s5 21 saved temporary (preserved across call)

 $s6 22 saved temporary (preserved across call)

 $s7 23 saved temporary (preserved across call)

 $t8 24 temporary (not preserved across call)

 $t9 25 temporary (not preserved across call)

 $k0 26 reserved for OS kernel

 $k1 27 reserved for OS kernel

 $gp 28 pointer to global area

 $sp 29 stack pointer

 $fp 30 frame pointer

 $ra 31 return address (used by function call)

MIPS registers and usage convention.

