
MIPS opcode map. The values of each field are shown to its left. The first column shows the values in base 10 and the second
shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except
for 6 op values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by point-ers. The last field
(funct) uses “f” to mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. The second field (rs) uses “z” to mean “0”, “1”,
“2”, or “3” if op = 16, 17, 18, or 19, respectively. If rs = 16, the operation is specified elsewhere: if z = 0, the operations are
specified in the fourth field (bits 4 to 0); if z = 1, then the operations are in the last field with f = s. If rs = 17 and z = 1, then the
operations are in the last field with f = d.

10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

16
00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0 f
10
11
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1 f
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2 f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3 f

op(31:26)

j
jal
beq
bne
blez
bgtz
addi
addiu
slti
sltiu
andi
ori
xori
lui
z = 0
z = 1
z = 2
z = 3

lb
lh
lwl
lw
lbu
lhu
lwr

sb
sh
swl
sw

swr

lwc0
lwc1
lwc2
lwc3

swc0
swc1
swc2
swc3

 rs
(25:21)
mfcz

cfcz

mtcz

ctcz

copz
copz

(16:16)
bczf
bczt

tlbr
tlbwi

tlbwr

tlbp

rfe

 rt
(20:16)

bltz
bgez

bltzal
bgezal

cvt.s.f
cvt.d.f

cvt.w.f

c.f.f
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f
c.st.f
c.ngle.f
c.seq.f
c.ngl.f
c.lt.f
c.nge.f
c.le.f
c.ngt.f

funct(5:0)
add.f
sub.f
mul.f
div.f

abs.f
mov.f
neg.f

funct(5:0)
sll

srl
sra
sllv

srlv
srav
jr
jalr

syscall
break

mfhi
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

slt
sltu

if z = l,
f = d

if z = l,
f = s

if z = 0

0
1

funct
(4:0)

MIPS R2000 Assembly Language

Arithmetic and Logical Instructions

Absolute value

Put the absolute value of register rsrc in register rdest.

Addition (with overflow)

Addition (without overflow)

Put the sum of registers rs and rt into register rd.

Addition immediate (with overflow)

Addition immediate (without overflow)

Put the sum of register rs and the sign-extended immediate into register rt.

AND

Put the logical AND of registers rs and rt into register rd.

AND immediate

Put the logical AND of register rs and the zero-extended immediate into
register rt.

abs rdest, rsrc pseudoinstruction

add rd, rs, rt 0 rs rt rd 0 0x20
6 5 5 5 5 6

addu rd, rs, rt 0 rs rt rd 0 0x21
6 5 5 5 5 6

addi rt, rs, imm 8 rs rt imm
6 5 5 16

addiu rt, rs, imm 9 rs rt imm
6 5 5 16

and rd, rs, rt 0 rs rt rd 0 0x24
6 5 5 5 5 6

andi rt, rs, imm 0xc rs rt imm
6 5 5 16

Divide (with overflow)

Divide (without overflow)

Divide register rs by register rt. Leave the quotient in register lo and the re-
mainder in register hi. Note that if an operand is negative, the remainder is
unspecified by the MIPS architecture and depends on the convention of the
machine on which SPIM is run.

Divide (with overflow)

Divide (without overflow)

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

Unsigned multiply

Multiply registers rs and rt. Leave the low-order word of the product in reg-
ister lo and the high-order word in register hi.

Multiply (without overflow)

Multiply (with overflow)

div rs, rt 0 rs rt 0 0x1a
6 5 5 10 6

divu rs, rt 0 rs rt 0 0x1b
6 5 5 10 6

div rdest, rsrc1, src2 pseudoinstruction

divu rdest, rsrc1, src2 pseudoinstruction

mult rs, rt 0 rs rt 0 0x18
6 5 5 10 6

multu rs, rt 0 rs rt 0 0x19
6 5 5 10 6

mul rdest, rsrc1, src2 pseudoinstruction

mulo rdest, rsrc1, src2 pseudoinstruction

MIPS R2000 Assembly Language

Unsigned multiply (with overflow)

Put the product of register rsrc1 and src2 into register rdest.

Negate value (with overflow)

Negate value (without overflow)

Put the negative of register rsrc into register rdest.

NOR

Put the logical NOR of registers rs and rt into register rd.

NOT

Put the bitwise logical negation of register rsrc into register rdest.

OR

Put the logical OR of registers rs and rt into register rd.

OR immediate

Put the logical OR of register rs and the zero-extended immediate into register
rt.

Remainder

mulou rdest, rsrc1, src2 pseudoinstruction

neg rdest, rsrc pseudoinstruction

negu rdest, rsrc pseudoinstruction

nor rd, rs, rt 0 rs rt rd 0 0x27
6 5 5 5 5 6

not rdest, rsrc pseudoinstruction

or rd, rs, rt 0 rs rt rd 0 0x25
6 5 5 5 5 6

ori rt, rs, imm 0xd rs rt imm
6 5 5 16

rem rdest, rsrc1, rsrc2 pseudoinstruction

Unsigned remainder

Put the remainder of register rsrc1 divided by register rsrc2 into register
rdest. Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the convention of the machine on which
SPIM is run.

Shift left logical

Shift left logical variable

Shift right arithmetic

Shift right arithmetic variable

Shift right logical

Shift right logical variable

Shift register rt left (right) by the distance indicated by immediate shamt or
the register rs and put the result in register rd. Note that argument rs is ig-
nored for sll, sra, and srl.

Rotate left

remu rdest, rsrc1, rsrc2 pseudoinstruction

sll rd, rt, shamt 0 rs rt rd shamt 0
6 5 5 5 5 6

sllv rd, rt, rs 0 rs rt rd 0 4
6 5 5 5 5 6

sra rd, rt, shamt 0 rs rt rd shamt 3
6 5 5 5 5 6

srav rd, rt, rs 0 rs rt rd 0 7
6 5 5 5 5 6

srl rd, rt, shamt 0 rs rt rd shamt 2
6 5 5 5 5 6

srlv rd, rt, rs 0 rs rt rd 0 6
6 5 5 5 5 6

rol rdest, rsrc1, rsrc2 pseudoinstruction

MIPS R2000 Assembly Language

Rotate right

Rotate register rsrc1 left (right) by the distance indicated by rsrc2 and put
the result in register rdest.

Subtract (with overflow)

Subtract (without overflow)

Put the difference of registers rs and rt into register rd.

Exclusive OR

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister rt.

Constant-Manipulating Instructions

Load upper immediate

Load the lower halfword of the immediate imm into the upper halfword of reg-
ister rt. The lower bits of the register are set to 0.

Load immediate

Move the immediate imm into register rdest.

ror rdest, rsrc1, rsrc2 pseudoinstruction

sub rd, rs, rt 0 rs rt rd 0 0x22
6 5 5 5 5 6

subu rd, rs, rt 0 rs rt rd 0 0x23
6 5 5 5 5 6

xor rd, rs, rt 0 rs rt rd 0 0x26
6 5 5 5 5 6

xori rt, rs, imm 0xe rs rt Imm
6 5 5 16

lui rt, imm 0xf O rt imm
6 5 5 16

li rdest, imm pseudoinstruction

Comparison Instructions

Set less than

Set less than unsigned

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

Set less than unsigned immediate

Set register rt to 1 if register rs is less than the sign-extended immediate, and
to 0 otherwise.

Set equal

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set greater than equal

Set greater than equal unsigned

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and
to 0 otherwise.

slt rd, rs, rt 0 rs rt rd 0 0x2a
6 5 5 5 5 6

sltu rd, rs, rt 0 rs rt rd 0 0x2b
6 5 5 5 5 6

slti rt, rs, imm 0xa rs rt imm
6 5 5 16

sltiu rt, rs, imm 0xb rs rt imm
6 5 5 16

seq rdest, rsrc1, rsrc2 pseudoinstruction

sge rdest, rsrc1, rsrc2 pseudoinstruction

sgeu rdest, rsrc1, rsrc2 pseudoinstruction

MIPS R2000 Assembly Language

Set greater than

Set greater than unsigned

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 other-
wise.

Set less than equal

Set less than equal unsigned

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0
otherwise.

Set not equal

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 other-
wise.

Branch Instructions
Branch instructions use a signed 16-bit instruction offset field; hence they can
jump 215 – 1 instructions (not bytes) forward or 215 instructions backwards.
The jump instruction contains a 26-bit address field.

In the descriptions below, the offsets are not specified. Instead, the instruc-
tions branch to a label. This is the form used in most assembly language pro-
grams because the distance between instructions is difficult to calculate when
pseudoinstructions expand into several real instructions.

Branch instruction

Unconditionally branch to the instruction at the label.

sgt rdest, rsrc1, rsrc2 pseudoinstruction

sgtu rdest, rsrc1, rsrc2 pseudoinstruction

sle rdest, rsrc1, rsrc2 pseudoinstruction

sleu rdest, rsrc1, rsrc2 pseudoinstruction

sne rdest, rsrc1, rsrc2 pseudoinstruction

b label pseudoinstruction

Branch coprocessor z true

Branch coprocessor z false

Conditionally branch the number of instructions specified by the offset if z’s
condition flag is true (false). z is 0, 1, 2, or 3. The floating-point unit is z = 1.

Branch on equal

Conditionally branch the number of instructions specified by the offset if
register rs equals rt.

Branch on greater than equal zero

Conditionally branch the number of instructions specified by the offset if
register rs is greater than or equal to 0.

Branch on greater than equal zero and link

Conditionally branch the number of instructions specified by the offset if
register rs is greater than or equal to 0. Save the address of the next instruction
in register 31.

Branch on greater than zero

Conditionally branch the number of instructions specified by the offset if
register rs is greater than 0.

bczt label 0x1z 8 1 Offset
6 5 5 16

bczf label 0x1z 8 0 Offset
6 5 5 16

beq rs, rt, label 4 rs rt Offset
6 5 5 16

bgez rs, label 1 rs 1 Offset
6 5 5 16

bgezal rs, label 1 rs 0x11 Offset
6 5 5 16

bgtz rs, label 7 rs 0 Offset
6 5 5 16

MIPS R2000 Assembly Language

Branch on less than equal zero

Conditionally branch the number of instructions specified by the offset if
register rs is less than or equal to 0.

Branch on less than and link

Conditionally branch the number of instructions specified by the offset if
register rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

Conditionally branch the number of instructions specified by the offset if
register rs is less than 0.

Branch on not equal

Conditionally branch the number of instructions specified by the offset if
register rs is not equal to rt.

Branch on equal zero

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

Branch on greater than equal unsigned

Conditionally branch to the instruction at the label if register rsrc1 is greater
than or equal to rsrc2.

blez rs, label 6 rs 0 Offset
6 5 5 16

bltzal rs, label 1 rs 0x10 Offset
6 5 5 16

bltz rs, label 1 rs 0 Offset
6 5 5 16

bne rs, rt, label 5 rs rt Offset
6 5 5 16

beqz rsrc, label pseudoinstruction

bge rsrc1, rsrc2, label pseudoinstruction

bgeu rsrc1, rsrc2, label pseudoinstruction

Branch on greater than

Branch on greater than unsigned

Conditionally branch to the instruction at the label if register rsrc1 is greater
than src2.

Branch on less than equal

Branch on less than equal unsigned

Conditionally branch to the instruction at the label if register rsrc1 is less than
or equal to src2.

Branch on less than

Branch on less than unsigned

Conditionally branch to the instruction at the label if register rsrc1 is less than
rsrc2.

Branch on not equal zero

Conditionally branch to the instruction at the label if register rsrc is not equal
to 0.

bgt rsrc1, src2, label pseudoinstruction

bgtu rsrc1, src2, label pseudoinstruction

ble rsrc1, src2, label pseudoinstruction

bleu rsrc1, src2, label pseudoinstruction

blt rsrc1, rsrc2, label pseudoinstruction

bltu rsrc1, rsrc2, label pseudoinstruction

bnez rsrc, label pseudoinstruction

MIPS R2000 Assembly Language

Jump Instructions

Jump

Unconditionally jump to the instruction at target.

Jump and link

Unconditionally jump to the instruction at target. Save the address of the next
instruction in register $ra.

Jump and link register

Unconditionally jump to the instruction whose address is in register rs. Save
the address of the next instruction in register rd (which defaults to 31).

Jump register

Unconditionally jump to the instruction whose address is in register rs.

Load Instructions

Load address

Load computed address—not the contents of the location—into register rdest.

Load byte

j target 2 target
6 26

jal target 3 target
6 26

jalr rs, rd 0 rs 0 rd 0 9
6 5 5 5 5 6

jr rs 0 rs 0 8
6 5 15 6

la rdest, address pseudoinstruction

lb rt, address 0x20 rs rt Offset
6 5 5 16

Load unsigned byte

Load the byte at address into register rt. The byte is sign-extended by lb, but
not by lbu.

Load halfword

Load unsigned halfword

Load the 16-bit quantity (halfword) at address into register rt. The halfword is
sign-extended by lh, but not by lhu.

Load word

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor

Load the word at address into register rt of coprocessor z (0–3). The floating-
point unit is z = 1.

Load word left

Load word right

Load the left (right) bytes from the word at the possibly unaligned address into
register rt.

lbu rt, address 0x24 rs rt Offset
6 5 5 16

lh rt, address 0x21 rs rt Offset
6 5 5 16

lhu rt, address 0x25 rs rt Offset
6 5 5 16

lw rt, address 0x23 rs rt Offset
6 5 5 16

lwcz rt, address 0x3z rs rt Offset
6 5 5 16

lwl rt, address 0x22 rs rt Offset
6 5 5 16

lwr rt, address 0x26 rs rt Offset
6 5 5 16

MIPS R2000 Assembly Language

Load doubleword

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

Unaligned load halfword unsigned

Load the 16-bit quantity (halfword) at the possibly unaligned address into
register rdest. The halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

Load the 32-bit quantity (word) at the possibly unaligned address into register
rdest.

Store Instructions

Store byte

Store the low byte from register rt at address.

Store halfword

Store the low halfword from register rt at address.

Store word

Store the word from register rt at address.

ld rdest, address pseudoinstruction

ulh rdest, address pseudoinstruction

ulhu rdest, address pseudoinstruction

ulw rdest, address pseudoinstruction

sb rt, address 0x28 rs rt Offset
6 5 5 16

sh rt, address 0x29 rs rt Offset
6 5 5 16

sw rt, address 0x2b rs rt Offset
6 5 5 16

Store word coprocessor

Store the word from register rt of coprocessor z at address. The floating-point
unit is z = 1.

Store word left

Store word right

Store the left (right) bytes from register rt at the possibly unaligned address.

Store doubleword

Store the 64-bit quantity in registers rsrc and rsrc + 1 at address.

Unaligned store halfword

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

Store the word from register rsrc at the possibly unaligned address.

Data Movement Instructions

Move

Move register rsrc to rdest.

Move from hi

swcz rt, address 0x32 rs rt Offset
6 5 5 16

swl rt, address 0x2a rs rt Offset
6 5 5 16

swr rt, address 0x2e rs rt Offset
6 5 5 16

sd rsrc, address pseudoinstruction

ush rsrc, address pseudoinstruction

usw rsrc, address pseudoinstruction

move rdest, rsrc pseudoinstruction

mfhi rd 0 0 rd 0 0x10
6 10 5 5 6

MIPS R2000 Assembly Language

Move from lo

The multiply and divide unit produces its result in two additional registers, hi
and lo. These instructions move values to and from these registers. The mul-
tiply, divide, and remainder pseudoinstructions that make this unit appear to
operate on the general registers move the result after the computation finishes.

Move the hi (lo) register to register rd.

Move to hi

Move to lo

Move register rs to the hi (lo) register.

Move from coprocessor z

Coprocessors have their own register sets. These instructions move values be-
tween these registers and the CPU’s registers.

Move coprocessor z’s register rd to CPU register rt. The floating-point unit is
coprocessor z = 1.

Move double from coprocessor 1

Move floating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest
and rdest + 1.

Move to coprocessor z

Move CPU register rt to coprocessor z’s register rd.

mflo rd 0 0 rd 0 0x12
6 10 5 5 6

mthi rs 0 rs 0 0x11
6 5 15 6

mtlo rs 0 rs 0 0x13
6 5 15 6

mfcz rt, rd 0x1z 0 rt rd 0
6 5 5 5 11

mfc1.d rdest, frsrc1 pseudoinstruction

mtcz rd, rt 0x1z 4 rt rd 0
6 5 5 5 11

Floating-Point Instructions
The MIPS has a floating-point coprocessor (numbered 1) that operates on sin-
gle precision (32-bit) and double precision (64-bit) floating-point numbers.
This coprocessor has its own registers, which are numbered $f0–$f31.
Because these registers are only 32 bits wide, two of them are required to hold
doubles, so only floating-point registers with even numbers can hold double
precision values.

Values are moved in or out of these registers one word (32 bits) at a time by
lwc1, swc1, mtc1, and mfc1 instructions described above or by the l.s, l.d,
s.s, and s.d pseudoinstructions described below. The flag set by floating-
point comparison operations is read by the CPU with its bc1t and bc1f in-
structions.

In the actual instructions below, bits 21–26 are 0 for single precision and 1
for double precision. In the pseudoinstructions below, fdest is a floating-
point register (e.g., $f2).

Floating-point absolute value double

Floating-point absolute value single

Compute the absolute value of the floating-point double (single) in register fs
and put it in register fd.

Floating-point addition double

Floating-point addition single

Compute the sum of the floating-point doubles (singles) in registers fs and ft
and put it in register fd.

abs.d fd, fs 0x11 1 0 fs fd 5
6 5 5 5 5 6

abs.s fd, fs 0x11 0 0 fs fd 5
6 5 5 5 5 6

add.d fd, fs, ft 0x11 1 ft fs fd 0
6 5 5 5 5 6

add.s fd, fs, ft 0x11 0 ft fs fd 0
6 5 5 5 5 6

MIPS R2000 Assembly Language

Compare equal double

Compare equal single

Compare the floating-point double in register fs against the one in ft and set
the floating-point condition flag true if they are equal. Use the bc1t or bc1f
instructions to test the value of this flag.

Compare less than equal double

Compare less than equal single

Compare the floating-point double in register fs against the one in ft and set
the floating-point condition flag true if the first is less than or equal to the sec-
ond. Use the bc1t or bc1f instructions to test the value of this flag.

Compare less than double

Compare less than single

Compare the floating-point double in register fs against the one in ft and set
the condition flag true if the first is less than the second. Use the bc1t or bc1f
instructions to test the value of this flag.

Convert single to double

c.eq.d fs, ft 0x11 1 ft fs 0 FC 2
6 5 5 5 5 2 4

c.eq.s fs, ft 0x11 0 ft fs 0 FC 2
6 5 5 5 5 2 4

c.le.d fs, ft 0x11 1 ft fs 0 FC 0xe
6 5 5 5 5 2 4

c.le.s fs, ft 0x11 0 ft fs 0 FC 0xe
6 5 5 5 5 2 4

c.lt.d fs, ft 0x11 1 ft fs 0 FC 0xc
6 5 5 5 5 2 4

c.lt.s fs, ft 0x11 0 ft fs 0 FC 0xc
6 5 5 5 5 2 4

cvt.d.s fd, fs 0x11 1 0 fs fd 0x21
6 5 5 5 5 6

Convert integer to double

Convert the single precision floating-point number or integer in register fs to
a double precision number and put it in register fd.

Convert double to single

Convert integer to single

Convert the double precision floating-point number or integer in register fs to
a single precision number and put it in register fd.

Convert double to integer

Convert single to integer

Convert the double or single precision floating-point number in register fs to
an integer and put it in register fd.

Floating-point divide double

Floating-point divide single

Compute the quotient of the floating-point doubles (singles) in registers fs
and ft and put it in register fd.

cvt.d.w fd, fs 0x11 0 0 fs fd 0x21
6 5 5 5 5 6

cvt.s.d fd, fs 0x11 1 0 fs fd 0x20
6 5 5 5 5 6

cvt.s.w fd, fs 0x11 0 0 fs fd 0x20
6 5 5 5 5 6

cvt.w.d fd, fs 0x11 1 0 fs fd 0x24
6 5 5 5 5 6

cvt.w.s fd, fs 0x11 0 0 fs fd 0x24
6 5 5 5 5 6

div.d fd, fs, ft 0x11 1 ft fs fd 3
6 5 5 5 5 6

div.s fd, fs, ft 0x11 0 ft fs fd 3
6 5 5 5 5 6

MIPS R2000 Assembly Language

Load floating-point double

Load floating-point single

Load the floating-point double (single) at address into register fdest.

Move floating-point double

Move floating-point single

Move the floating-point double (single) from register fs to register fd.

Floating-point multiply double

Floating-point multiply single

Compute the product of the floating-point doubles (singles) in registers fs and
ft and put it in register fd.

Negate double

Negate single

Negate the floating-point double (single) in register fs and put it in register
fd.

l.d fdest, address pseudoinstruction

l.s fdest, address pseudoinstruction

mov.d fd, fs 0x11 1 0 fs fd 6
6 5 5 5 5 6

mov.s fd, fs 0x11 0 0 fs fd 6
6 5 5 5 5 6

mul.d fd, fs, ft 0x11 1 ft fs fd 2
6 5 5 5 5 6

mul.s fd, fs, ft 0x11 0 ft fs fd 2
6 5 5 5 5 6

neg.d fd, fs 0x11 1 0 fs fd 7
6 5 5 5 5 6

neg.s fd, fs 0x11 0 0 fs fd 7
6 5 5 5 5 6

Store floating-point double

Store floating-point single

Store the floating-point double (single) in register fdest at address.

Floating-point subtract double

Floating-point subtract single

Compute the difference of the floating-point doubles (singles) in registers fs
and ft and put it in register fd.

s.d fdest, address pseudoinstruction

s.s fdest, address pseudoinstruction

sub.d fd, fs, ft 0x11 1 ft fs fd 1
6 5 5 5 5 6

sub.s fd, fs, ft 0x11 0 ft fs fd 1
6 5 5 5 5 6

No operation

Do nothing.

Programming in assembly language requires a programmer to trade off help-
ful features of high-level languages—such as data structures, type checking,
and control constructs—for complete control over the instructions that a com-
puter executes. External constraints on some applications, such as response
time or program size, require a programmer to pay close attention to every
instruction. However, the cost of this level of attention is assembly language
programs that are longer, more time-consuming to write, and more difficult to
maintain than high-level language programs.

Moreover, three trends are reducing the need to write programs in assembly
language. The first trend is toward the improvement of compilers. Modern
compilers produce code that is typically comparable to the best handwritten
code and is sometimes better. The second trend is the introduction of new pro-
cessors that are not only faster, but in the case of processors that execute mul-
tiple instructions simultaneously, also more difficult to program by hand. In
addition, the rapid evolution of the modern computer favors high-level lan-
guage programs that are not tied to a single architecture. Finally, we witness a
trend toward increasingly complex applications—characterized by complex
graphic interfaces and many more features than their predecessors. Large ap-
plications are written by teams of programmers and require the modularity
and semantic checking features provided by high-level languages.

To Probe Further

Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.

The last word on the MIPS instruction set and assembly language programming on these machines.

Aho, A., R. Sethi, and J. Ullman [1985]. Compilers: Principles, Techniques, and Tools, Addison-
Wesley, Reading, MA.

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers.

nop 0 0 0 0 0 0
6 5 5 5 5 6

A.11 Concluding Remarks A.11

