10 16 op(31:26 10 funct(5:0, 10 _ funct(5:0,
0 00 ° >0 | sl —» 0| add.f
1 01 N 1 1| sub.f
2 021j 2| sl 2 | mul.f
3 03] jal 3| sra 3| div.f
4 04| beq 4| sliv 4

5 05| bne 5 5| abs.f
6 06 | blez 6 | srlv 6 | mov.f
7 07 | bgtz | 7| srav | 7 | neg.f
8 08 | addi 8| jr 8

9 09 | addiu 9| jalr 9

10 0a | st 10 10

11 0b | sltiu 11 11

12 Oc | andi 12 | syscall 12

13 0d | ori 13 | break 13

14 Oe | xori 14 14

15 Of | Jui 15 15

16 10| z=0 ® 16 | mfhi 16

17 11| z=1 ® > 17 | mthi 17

18 12| z=2 ® » 18 | mflo 18

19 13| z=3 ® > 19 | mtlo 19

20 14 20 20

21 15 21 21

22 16 22 22

23 17 23 23

24 18 24 | mult 24

25 19 25 | multu 25

26 1la 26 | div 26

27 1b 27 | divu 27

28 1c¢ 28 28

29 1d v v 29 29

30 1e rs funct rt 30 30

31 1f (25:21) 16:16) (4:0) (20:16) 31 31

32 20| 1b 0| mfez 0 0 o | bitz 32| add 32| ovts.f
33 211 1 1lb 1 | tlbr 1| bgez 33 | addu 33| cvtd.f
34 22| wl 2 | cfez 2 | tlbwi 2 34 | sub 34

35 23| |w 3 3 3 35 | subu 35

36 24 | |bu 4 | mtcz 4 4 36 | and 36 | cvtw.f
37 25| hu 5 5 5 37 | or 37

38 26 | Iwr 6 | ctcz 6 | tlbwr 6 38 | xor 38

39 27 7 7 7 39 | nor 39

40 28| sb 8 . — 8 | tlbp 8 40 40

41 29 | sh 9 9 9 a1 a1

42 2a | swl 10 10 10 42 | sit 42

43 2b | sw 11 11 11 43 | sity 43

44 2¢ 12 12 12 44 44

45 2d 13 13 13 45 45

46 2e | swr 14 ifz=0 | 14 14 46 46

47 of 15 15 15 47 47

48 30 | lwcO 16 | copz @ 16 | rfe 16 | bltzal 48 48 | c.f.f
49 31 | lwel 17 | copz o+ 17 17 | bgezal 49 49 | c.un.f
50 32| |we2 18 ifz=1 ifz=1| 18 18 50 50 | c.eq.f
51 33| iwe3 19 f=d f=s 19 19 51 51 | c.ueq.f
52 34 20 20 20 52 52 | c.olt.f
53 35 21 21 21 53 53 | c.ult.f
54 36 22 22 22 54 54 | c.ole.f
55 37 23 23 23 55 55 | c.ule.f
56 38 | swco 24 24 24 56 56 | c.st.f
57 39| swecl 25 25 25 57 57 | c.ngle.f
58 3a | swc2 26 26 26 58 58 | c.seq.f
59 3b | swe3 27 27 27 59 59 | c.ngl.f
60 3¢ 28 28 28 60 60 | c.lt.f
61 3d 29 29 29 61 61 | c.nge.f
62 3e 30 30 30 62 62 | c.le.f
63 3f 31 il 31 31 63 63 | c.ngt.f

MIPS opcode map. The values of each field are shown to its left. The first column shows the values in base 10 and the seconcl
shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except
for 6 op values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by point-ers. The last fielcl
(funct) uses “f” to mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. The second field (rs) uses “z” to mean “0”, “1”,
“2”, or “3” if op = 16, 17, 18, or 19, respectively. If rs = 16, the operation is specified elsewhere: if z = 0, the operations are
specified in the fourth field (bits 4 to 0); if z = 1, then the operations are in the last field with f =s. If rs = 17 and z = 1, then the
operations are in the last field with f = d.

MIPS R2000 Assembly Language page 2

Arithmetic and Logical Instructions

Absolute value

abs rdest, rsrc pseudoinstruction

Put the absolute value of register rsrc in register rdest.

Addition (with overflow)

addrd,rs,rt‘O‘rs‘rt‘rd‘O‘OxQO‘
6 5 5 5 5 6

Addition (without overflow)

addu rd, rs, rt | 0 [rs [rt [rd | O [Ox21 |
6 5 5 5 5 6

Put the sum of registers rs and rt into register rd.

Addition immediate (with overflow)

addi rt, rs, imm‘ 8 ‘ rs ‘ rt ‘ imm

Addition immediate (without overflow)

addiu rt, rs, 1mm‘ 9 ‘ rs ‘ rt ‘ imm ‘
6 5 5 16

Put the sum of register rs and the sign-extended immediate into register rt.

AND

and rd, rs, rt] 0 [rs [rt [rd [0 | Ox24 |
6 5 5 5 5 6

Put the logical AND of registers rs and rt into register rd.

AND immediate

andi rt, rs, imm| oxe | rs [rt | imm ‘
6 5 5 16

Put the logical AND of register rs and the zero-extended immediate into
register rt.

page 3

Divide (with overflow)

div rs, rt ‘ 0 ‘rs‘rt‘ 0 ‘Oxia‘
6 5 5 10 6

Divide (without overflow)

divu rs, rt ‘ 0 ‘ rs ‘ rt ‘ 0 ‘Oxib‘
6 5 5 10 6

Divide register rs by register rt. Leave the quotient in register 10 and the re-
mainder in register hi. Note that if an operand is negative, the remainder is
unspecified by the MIPS architecture and depends on the convention of the
machine on which SPIM is run.

Divide (with overflow)

div rdest, rsrcl, src2 pseudoinstruction

Divide (without overflow)
divu rdest, rsrcl, src? pseudoinstruction

Put the quotient of register rsrcl and src2 into register rdest.

Multiply

mult rs, rt ‘ 0 ‘ rs ‘ rt ‘ 0 ‘ 0x18 ‘
6 5 5 10 6

Unsigned multiply

multu rs, rt ‘ 0 ‘ rs ‘ rt ‘ 0 ‘ 0x19 ‘
6 5 5 10 6

Multiply registers rs and rt. Leave the low-order word of the product in reg-
ister 10 and the high-order word in register hi.

Multiply (without overflow)

mul rdest, rsrcl, src2 pseudoinstruction

Multiply (with overflow)

mulo rdest, rsrcl, src2 pseudoinstruction

MIPS R2000 Assembly Language page 4

Unsigned multiply (with overflow)
mulou rdest, rsrcl, src2 pseudoinstruction

Put the product of register rsrcl and src? into register rdest.

Negate value (with overflow)

neg rdest, rsrc pseudoinstruction

Negate value (without overflow)
negu rdest, rsrc pseudoinstruction

Put the negative of register rsrc into register rdest.

NOR

norrd,rs,rt‘ 0 ‘rs ‘ rt ‘ rd ‘ 0 ‘Ox27‘
6 5 5 5 5 6

Put the logical NOR of registers rs and rt into register rd.

NOT
not rdest, rsrc pseudoinstruction

Put the bitwise logical negation of register rsrc into register rdest.

OR

orrd, rs,rt | 0 [rs [rt [rd [0 | Ox25 |
6 5 5 5 5 6

Put the logical OR of registers rs and rt into register rd.

OR immediate

ori rt, rs, 1'mm\ Oxd ‘ rs ‘ rt ‘ imm ‘
6 5 5 16

Put the logical OR of register rs and the zero-extended immediate into register
rt.

Remainder

rem rdest, rsrcl, rsrc2 pseudoinstruction

page 5

Unsigned remainder
remu rdest, rsrcl, rsrc2 pseudoinstruction

Put the remainder of register rsrcl divided by register rsrc?2 into register
rdest. Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the convention of the machine on which
SPIM is run.

Shift left logical

s11 rd, rt, shamt ‘ 0 ‘ rs ‘ rt ‘ rd ‘ shamt ‘ 0 ‘
6 5 5 5 5 6
Shift left logical variable
s1lv rd, rt, rs o [s rt][rd] o] 4 |
6 5 5 5 5
Shift right arithmetic
sra rd, rt, shamt 0 [rs [rt [rd [shamt | 3
6 5 5 5 5 6
Shift right arithmetic variable
srav rd, rt, rs ‘ 0 ‘ rs ‘ rt ‘ rd ‘ 0 ‘ 7 ‘
6 5 5 5 5 6
Shift right logical
srl rd, rt, shamt [0 [rs [rt [rd | shamt | 2 |
5 5 5 5 6
Shift right logical variable
srlv rd, rt, rs o [s [rt][rd] o] 6 |
6 5 5 5 5 6

Shift register rt left (right) by the distance indicated by immediate shamt or
the register rs and put the result in register rd. Note that argument rs is ig-
nored for s11, sra,and sr1.

Rotate left

rol rdest, rsrcl, rsrc2 pseudoinstruction

MIPS R2000 Assembly Language page 6

Rotate right

ror rdest, rsrcl, rsrc2 pseudoinstruction

Rotate register rsrcl left (right) by the distance indicated by rsrc2 and put
the result in register rdest.

Subtract (with overflow)

Subrd,rs,rt‘ 0 ‘rs ‘ rt ‘ rd ‘ 0 ‘Ox22‘
6 5 5 5 5 6

Subtract (without overflow)

subu rd, rs, rt| 0 [rs [rt | rd [O [Ox23 |
6 5 5 5 5 6

Put the difference of registers rs and rt into register rd.

Exclusive OR

xorrd,rs,rt‘ 0 ‘rs‘rt‘rd‘o ‘Ox26‘
6 5 5 5 5 6

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

xori rt, rs, imm|[oxe [rs | rt | Imm ‘
6 5 5 16

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister rt.

Constant-Manipulating Instructions

Load upper immediate

Tui rt, imm ‘ Oxf ‘ (o] ‘ rt ‘ imm ‘
6 5 5 16

Load the lower halfword of the immediate imm into the upper halfword of reg-
ister rt. The lower bits of the register are set to 0.

Load immediate

11 rdest, imm pseudoinstruction

Move the immediate imm into register rdest.

page 7

Comparison Instructions

Set less than

s]trd,rs,rt‘ 0 ‘rs‘rt‘rd‘o ‘Oxza‘
6 5 5 5 5 6

Set less than unsigned

sltu rd, rs, rt‘ 0 ‘rs ‘ rt ‘ rd ‘ 0 ‘0x2b‘
6 5 5 5 5 6

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

s1ti rt, rs, imm ‘ Oxa ‘ rs ‘ rt ‘ imm
6 5 5 16

Set less than unsigned immediate

sltiu rt, rs, imm [Oxb [rs [rt | imm ‘
6 5 5 16

Set register rt to 1 if register rs is less than the sign-extended immediate, and
to 0 otherwise.

Set equal

seq rdest, rsrcl, rsrcZ pseudoinstruction

Set register rdest to 1 if register rsrcl equals rsrcz, and to 0 otherwise.

Set greater than equal

sge rdest, rsrcl, rsrc?2 pseudoinstruction

Set greater than equal unsigned

sgeu rdest, rsrcl, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrcl is greater than or equal to rsrcz, and
to 0 otherwise.

MIPS R2000 Assembly Language page 8

Set greater than

sgt rdest, rsrcl, rsrc2 pseudoinstruction

Set greater than unsigned

sgtu rdest, rsrcl, rsrc?2 pseudoinstruction

Set register rdest to 1 if register rsrcl is greater than rsrc2, and to 0 other-
wise.

Set less than equal

sle rdest, rsrcl, rsrc2 pseudoinstruction

Set less than equal unsigned

sleu rdest, rsrcl, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrcl is less than or equal to rsrc2, and to 0
otherwise.

Set not equal
sne rdest, rsrcl, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrcl is not equal to rsrcz, and to 0 other-
wise.

Branch Instructions

Branch instructions use a signed 16-bit instruction offset field; hence they can
jump 2% — 1 instructions (not bytes) forward or 215 instructions backwards.
The jump instruction contains a 26-bit address field.

In the descriptions below, the offsets are not specified. Instead, the instruc-
tions branch to a label. This is the form used in most assembly language pro-
grams because the distance between instructions is difficult to calculate when
pseudoinstructions expand into several real instructions.

Branch instruction
b Tabel pseudoinstruction

Unconditionally branch to the instruction at the label.

page9

Branch coprocessor z true

bczt label foxiz | 8 [1] Offset
6 5 5 16

Branch coprocessor z false

bczf label foxiz | 8 [0 | Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if z’s
condition flag is true (false). z is 0, 1, 2, or 3. The floating-point unit is z = 1.

Branch on equal

beq rs, rt, Tabew 4 ‘ rs ‘ rt ‘ Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register r's equals rt.

Branch on greater than equal zero

bgez rs, label[1 [rs [1 | Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register r's is greater than or equal to 0.

Branch on greater than equal zero and link

bgezal rs, Tlabel ‘ 1 ‘ rs ‘Oxil‘ Offset ‘
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register rs is greater than or equal to 0. Save the address of the next instruction
in register 31.

Branch on greater than zero

bgtz rs, label[7 [rs [0 | Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register rs is greater than 0.

MIPS R2000 Assembly Language page 10

Branch on less than equal zero

blez rs, Tlabel ‘ 6 ‘ rs ‘ 0 ‘ Offset ‘
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register rs is less than or equal to 0.

Branch on less than and link

bltzal rs, Tlabel |1 | rs [oxt0 | Offset \
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

b1tz rs, Tlabel ‘ 1 ‘ rs ‘ 0 ‘ Offset ‘
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register rs is less than 0.

Branch on not equal

bne rs, rt, Tlabel ‘ 5 ‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Conditionally branch the number of instructions specified by the offset if
register r's is not equal to rt.

Branch on equal zero

beqz rsrc, Tabel pseudoinstruction

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

bge rsrcl, rsrc2, label pseudoinstruction

Branch on greater than equal unsigned

bgeu rsrcl, rsrcz, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrcl is greater
than or equal to rsrc2.

page 11

Branch on greater than

bgt rsrcl, src2, label pseudoinstruction

Branch on greater than unsigned

bgtu rsrcl, srcZ2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrcl is greater
than src2.

Branch on less than equal

ble rsrcl, src2, Tabel pseudoinstruction

Branch on less than equal unsigned

bleu rsrcl, src2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrcl is less than
or equal to srcZ.

Branch on less than

b1t rsrcl, rsrc2, Tlabel pseudoinstruction

Branch on less than unsigned

b1tu rsrcl, rsrc2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrcl is less than
rsrce.

Branch on not equal zero
bnez rsrc, Tlabel pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc is not equal
to 0.

MIPS R2000 Assembly Language page 12

Jump Instructions

Jump

Jj target ‘ 2 ‘ target ‘
26

Unconditionally jump to the instruction at target.

Jump and link

jal target ‘ 3 ‘ target ‘
6 26

Unconditionally jump to the instruction at target. Save the address of the next
instruction in register $ra.

Jump and link register

ja]rrs,rd‘O‘rs‘O‘rd‘O‘Q‘

Unconditionally jump to the instruction whose address is in register rs. Save
the address of the next instruction in register rd (which defaults to 31).

Jump register

jrors ‘O‘rs‘ 0 ‘8‘
6 5 15 6

Unconditionally jump to the instruction whose address is in register rs.

Load Instructions

Load address
la rdest, address pseudoinstruction

Load computed address—not the contents of the location—into register rdest.

Load byte

b rt, address‘ 0x20 ‘ rs ‘ rt ‘ Offset
6 5 5 16

page 13

Load unsigned byte

lbu rt, address‘ 0x24 ‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Load the byte at address into register rt. The byte is sign-extended by 1b, but
not by Tbu.

Load halfword

Th rt, address| ox21 [rs [rt | Offset
6 5 5 16

Load unsigned halfword

Thu rt, address‘ 0x25 ‘ rs ‘ rt ‘ Offset
6 5 5 16

Load the 16-bit quantity (halfword) at address into register rt. The halfword is
sign-extended by 1h, but not by Thu.

Load word

Tw rt, address| ox23 [rs [rt | Offset
6 5 5 16

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor

Twcz rt, address‘ Ox3z‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Load the word at address into register rt of coprocessor z (0-3). The floating-
point unitis z = 1.

Load word left

Twl rt, address‘ 0x22 ‘ rs ‘ rt ‘ Offset
6 5 5 16

Load word right

Twr rt, address‘ 0x26 ‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Load the left (right) bytes from the word at the possibly unaligned address into
register rt.

MIPS R2000 Assembly Language page 14

Load doubleword
1d rdest, address pseudoinstruction

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

ulh rdest, address pseudoinstruction

Unaligned load halfword unsigned
ulhu rdest, address pseudoinstruction

Load the 16-bit quantity (halfword) at the possibly unaligned address into
register rdest. The halfword is sign-extended by ulh, but not ulhu.

Unaligned load word
ulw rdest, address pseudoinstruction

Load the 32-bit quantity (word) at the possibly unaligned address into register
rdest.

Store Instructions

Store byte

sb rt, address‘ 0x28 ‘ rs ‘ rt ‘ Offset
6 5 5 16

Store the low byte from register rt at address.

Store halfword

sh rt, address‘ 0x29 ‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Store the low halfword from register rt at address.

Store word

sw rt, address‘ 0x2b ‘ rs ‘ rt ‘ Offset
6 5 5 16

Store the word from register rt at address.

page 15

Store word coprocessor

swcz rt, address‘ 0x32 ‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Store the word from register rt of coprocessor z at address. The floating-point
unitisz =1.

Store word left

swl rt, address‘ Ox2a ‘ rs ‘ rt ‘ Offset
6 5 5 16

Store word right

swr ort, address‘ Ox2e ‘ rs ‘ rt ‘ Offset ‘
6 5 5 16

Store the left (right) bytes from register rt at the possibly unaligned address.

Store doubleword

sd rsrc, address pseudoinstruction

Store the 64-bit quantity in registers rsrc and rsrc + 1 ataddress.

Unaligned store halfword

ush rsrc, address pseudoinstruction

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word
usw rsrc, address pseudoinstruction

Store the word from register rsrc at the possibly unaligned address.

Data Movement Instructions

Move
move rdest, rsrc pseudoinstruction

Move register rsrc to rdest.

Move from hi

mfhi rd o] 0 | rd | 0 | ox10 |

MIPS R2000 Assembly Language page 16

Move from lo

mflo rd o] 0 [rd | o [oxt2 |
6 10 5 5 6

The multiply and divide unit produces its result in two additional registers, h'i
and 10. These instructions move values to and from these registers. The mul-
tiply, divide, and remainder pseudoinstructions that make this unit appear to
operate on the general registers move the result after the computation finishes.

Move the hi (10) register to register rd.

Move to hi

mthi rs o [s] 0 | oxa1 |
6 5 15 6

Move to lo

mtlo rs ‘ 0 ‘ rs ‘ 0 ‘ 0x13 ‘
6 5 15 6

Move register rs to the hi (10) register.

Move from coprocessor z

mfcz rt, rd [O0xtz | 0 [rt [rd | 0 ‘
6 5 5 5 1

Coprocessors have their own register sets. These instructions move values be-
tween these registers and the CPU’s registers.

Move coprocessor z’s register rd to CPU register rt. The floating-point unit is
coprocessor z = 1.

Move double from coprocessor 1
mfcl.d rdest, frsrcl pseudoinstruction

Move floating-point registers frsrcl and frsrcl + 1to CPU registers rdest
and rdest + 1.

Move to coprocessor z

mtcz rd, rt ‘Oxlz‘ 4 ‘ rt ‘ rd ‘ 0 ‘
6 5 5 5 1

Move CPU register rt to coprocessor z’s register rd.

page 17

Floating-Point Instructions

The MIPS has a floating-point coprocessor (numbered 1) that operates on sin-
gle precision (32-bit) and double precision (64-bit) floating-point numbers.
This coprocessor has its own registers, which are numbered $f0-$f31.
Because these registers are only 32 bits wide, two of them are required to hold
doubles, so only floating-point registers with even numbers can hold double
precision values.

Values are moved in or out of these registers one word (32 bits) at a time by
Twcl, swel, mtel, and mfcl instructions described above or by the 1.5, 1.4,
s.s, and s.d pseudoinstructions described below. The flag set by floating-
point comparison operations is read by the CPU with its bclt and bclf in-
structions.

In the actual instructions below, bits 21-26 are 0 for single precision and 1
for double precision. In the pseudoinstructions below, fdest is a floating-
point register (e.g., $2).

Floating-point absolute value double

abs.d fd, fs [oxa1 | 1 [0 [fs [fd | 5 |
6 5 5 5 5 6

Floating-point absolute value single

abs.s fd, fs |[oxx1 [o [o [fs [fd | 5 |
6 5 5 5 5 6

Compute the absolute value of the floating-point double (single) in register fs
and put it in register fd.

Floating-point addition double

add.d fd, fs, ft[o1 | 1 [ft [fs [fd | 0O |
6 5 5 5 5

Floating-point addition single

add.s fd, fs, ft/oxta1 [o | #t [fs | fd | 0 |
6 5 5 5 5 6

Compute the sum of the floating-point doubles (singles) in registers fs and ft
and put it in register fd.

MIPS R2000 Assembly Language page 18

Compare equal double

ceq.d fs, ft [oxar [2 [£ | s [o [Fc | 2 |
6 5 5 5 5 2 4

Compare equal single

ceq.s fs, ft [oxaa | o [# [fs [0o [FC | 2
6 5 5 5 5 2 4

Compare the floating-point double in register fs against the one in ft and set
the floating-point condition flag true if they are equal. Use the bclt or bclf
instructions to test the value of this flag.

Compare less than equal double

c.led fs, ft [oxaa | 1 [ft [fs | 0 [FC | Oxe |
6 5 5 5 5 2 4

Compare less than equal single

c.le.s fs, ft [oxtt [o [ft [fs | o | FC [oxe |
6 5 5 5 5 2 4

Compare the floating-point double in register fs against the one in ft and set
the floating-point condition flag true if the first is less than or equal to the sec-
ond. Use the bclt or bclf instructions to test the value of this flag.

Compare less than double

c.lt.d fs, ft]oxt [1 [# [fs [0 [FC [ox |
6 5 5 5 5 2 4

Compare less than single

c.lt.s fs, ft]oxtt [o | f [fs | | FC | oxe |
6 5 5 5 5 2 4

o

Compare the floating-point double in register fs against the one in ft and set
the condition flag true if the first is less than the second. Use the bc1t or bclf
instructions to test the value of this flag.

Convert single to double

cvt.d.s fd, fs| o1 | 1 [0o [fs [fd | ox21 |
6 5 5 5 5 6

page 19

Convert integer to double

cvt.dow fd, fs[oxa1 | o [0o [fs | fd | ox21 |
6 5 5 5 5 6

Convert the single precision floating-point number or integer in register s to
a double precision number and put it in register fd.

Convert double to single

cvt.s.d fd, fs[oxa1 | 1 [0o [fs [fd | 0x20 |
6 5 5 5 5 6

Convert integer to single

cvt.s.w fd, fs[oxa1 | o [o [fs [fd | 0x20 |
6 5 5 5 5 6

Convert the double precision floating-point number or integer in register f's to
a single precision number and put it in register fd.

Convert double to integer

cvtow.d fd, fs{ oxt1 [12 [o | fs | fd | ox24 |
6 5 5 5 5 6

Convert single to integer

cvt.w.s fd, fs[o1 | o [o [fs | fd | ox24 |
6 5 5 5 5 6

Convert the double or single precision floating-point number in register fs to
an integer and put it in register fd.

Floating-point divide double

div.d fd, fs, ft]oxt1 | 1 | # [fs | fd | 3 |
6 5 5 5 5 6

Floating-point divide single

div.s fd, fs, ft/oar [o [ft [s [fd [3 |
6 5 5 5 5 6

Compute the quotient of the floating-point doubles (singles) in registers fs
and ft and put it in register fd.

MIPS R2000 Assembly Language page 20

Load floating-point double

1.d fdest, address pseudoinstruction

Load floating-point single

1.s fdest, address pseudoinstruction

Load the floating-point double (single) at address into register fdest.

Move floating-point double

mov.d fd, fs |[ox1t1 [1 [o [fs [fd | 6 |
6 5 5 5 5 6

Move floating-point single

mov.s fd, fs [ox11 | o [o [fs [fd [6
6 5 5 5 5 6

Move the floating-point double (single) from register fs to register fd.

Floating-point multiply double

mul.d fd, fs, ft]oxxx | 1 | f [fs [fd | 2
6 5 5 5 5 6

Floating-point multiply single

mul.s fd, fs, ft[oxt1 | o | # [fs [fd | 2 |
6 5 5 5 5 6

Compute the product of the floating-point doubles (singles) in registers f's and
ft and put it in register fd.

Negate double

neg.d fd, fs |[oxa1 | 1 [0o [fs [fd | 7 |
6 5 5 5 5 6

Negate single

neg.s fd, fs [oxt1 | o | o [fs | fd | 7 |
6 5 5 5 5

Negate the floating-point double (single) in register fs and put it in register
fd.

page 21

Store floating-point double

s.d fdest, address pseudoinstruction

Store floating-point single
s.s fdest, address pseudoinstruction

Store the floating-point double (single) in register fdest at address.

Floating-point subtract double

sub.d fd, fs, ft[o1 | 1 [ft [fs [fd | 1 |
6 5 5 5 5 6

Floating-point subtract single

sub.s fd, fs, ft/oxta [o | #ft [fs [fd | 1 |
6 5 5 5 5 6

Compute the difference of the floating-point doubles (singles) in registers fs
and ft and put it in register fd.

page 22

No operation

nop o JoJoJo o] o

Do nothing.

