A common reproductive feature in *Aster divaricatus* is a change in color after several days of the corollas of disk flowers from yellow to red/purple.

Disk flowers of *Aster divaricatus* change color from yellow to red/purple.

To be more efficient our data would have to be recorded for longer time periods under varying conditions such as weather and season as these variables would not effect selection of flowers.

Our conclusions would be stronger if we had collected more data under a variety of environmental conditions.

We also saw a steady pattern of pollinators visiting the yellow disk flowers with a much greater frequency than the older, red disk flowers.

Pollinators visited yellow heads much more frequently than red heads.

In many floral species, color change has a great deal to do with the fertility of flower heads. Many start off yellow and change to red as they mature and are depleted of nectar (Weiss 1991). It can be assumed that the same holds true for this species of flower. This would mean insects can recognize the fact that the yellow color means viability and the red color means that it would be a waste of time to try to get nectar from that flower head.

Floral color changes in many species accompany depletion of nectar or loss of sexual function (Weiss 1991), and the same may be true in *Aster divaricatus*. Insects presumably learn to associate the color change with a loss of reward.
Data showed that petal length does not significantly affect the number of visits to a flower; this holds for 2 different years of data (2000- chi squared = 0.4, 1999- chi squared = 1.426, both less than 5.99, therefore not significantly different.)

Petal length did not significantly affect the number of heads visited, either in 1999 ($X^2 = 1.43$, 2 df, $P > 0.05$) or in 2000 ($X^2 = 0.40$, 2 df, $P > 0.05$).

In the first part of the experiment, I examined the number of pollinators that visited each head with altered rays. To get a proper sample size, I analyzed the data from 1999 as well as from 2000. The Chi-Square test for the number of pollinators in 1999 was 1.458 with two degrees of freedom, giving less than 5% and 1% significance. However, the Chi-Square test for the number of heads visited in 1999 was 13.813 with two degrees of freedom, which is much higher than the 5% or 1% significance. The Chi-Square test for the number of pollinators in 2000 was 0.4000 with 2 degrees of freedom, less than the 5% or 1% significance level.

In the ray length experiment, similar numbers of pollinators visited heads with intact, partially removed and completely removed rays (Table 1). These numbers did not differ significantly from equal visitation to the three types of heads in either 1999 ($X^2 = 1.46$, 2 df, $P > 0.05$) or in 2000 ($X^2 = 0.40$, 2 df, $P > 0.05$). In 1999, however, pollinators visited more heads in the intact and partial removal treatments and fewer in the complete removal treatments than expected based on a null hypothesis of equal visitation ($X^2 = 13.87$, 2 df, $P < 0.01$).