
Polynomial Approximation onReal-Analyti
 Varieties in Cn
John T. Anderson, Alexander J. Izzo, and John WermerAbstra
tWe prove: Let � be a 
ompa
t real-analyti
 variety in an open set 
 � Cn. As-sume (i) � is polynomially 
onvex and (ii) every point of � is a peak point for P (�).Then P (�) = C(�). This generalizes a previous result of the authors on polynomialapproximation on three-dimensional real-analyti
 submanifolds of Cn.

1. Introdu
tionWe 
onsider the problem of approximating arbitrary 
ontinuous fun
tions on a 
ompa
tsubset X of n-dimensional 
omplex Eu
lidean spa
e Cn by polynomials in the 
oordinatefun
tions z1; : : : ; zn. We let C(X) denote the spa
e of all 
ontinuous 
omplex-valued fun
-tions on X, with norm kgkX = maxfjg(z)j : z 2 Xg, and we let P (X) denote the 
losureof the set of polynomials in C(X). The polynomially 
onvex hull of X will be denoted 
X.That is, 
X = fz 2 Cn : jQ(z)j � kQkX for every polynomial QgTwo ne
essary 
onditions for P (X) = C(X) are:(i) X is polynomially 
onvex, i.e. X = 
X;(ii) Every point of X is a peak point for P (X), i.e., given p 2 X, there exists f 2 P (X)with f(p) = 1 and jf j < 1 on X n fpg.2000 Mathemati
s Subje
t Classi�
ation. Primary 32E30, Se
ondary 46J10.
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With a general uniform algebra A on a 
ompa
t metri
 spa
e X repla
ing P (X), andwith (i) repla
ed by the 
ondition that the maximal ideal spa
e of A 
oin
ides with X, itwas on
e 
onje
tured that together these two ne
essary 
onditions for A = C(X) were alsosuÆ
ient to imply A = C(X). However, a 
ounterexample to this \peak-point 
onje
ture"was produ
ed by Brian Cole in his 1968 thesis (see the appendix to [5℄, or [12℄, se
tion 19).Additional 
ounterexamples to the peak point 
onje
ture have been given in the 
ontextof polynomial and rational approximation in several 
omplex variables. In parti
ular these
ounterexamples show that 
onditions (i) and (ii) above are not suÆ
ient for P (X) = C(X).For more on this, see [2℄, [3℄, [4℄ and [9℄.In [2℄ the �rst two authors established a peak-point result for two-manifolds:Theorem 1.1 LetM be a 
ompa
t two-dimensional di�erentiable manifold, and A a uniformalgebra on M generated by 
ontinuously di�erentiable fun
tions. Assume that the maximalideal spa
e of A is M , and that ea
h point of M is a peak point for A. Then A = C(M).An example of Izzo [9℄ shows that Theorem 1.1 fails for uniform algebras on smooth threemanifolds. However, in [3℄ the authors established the following:Theorem 1.2 Let � be a real-analyti
 three-dimensional submanifold of Cn. Let X be a
ompa
t subset of � su
h that �X (the boundary of X relative to �), is a two-dimensionalsubmanifold of 
lass C1. If X satis�es 
onditions (i) and (ii) above, then P (X) = C(X).Our purpose in this note is to extend Theorem 1.2 to real-analyti
 varieties of arbitrarydimension in Cn. We prove:Theorem 1.3 Let � be a 
ompa
t real-analyti
 variety in an open set 
 � Cn. Assume(i) � = b� and (ii) every point of � is a peak point for P (�). Then P (�) = C(�).If �Bn denotes the boundary of the unit ball in Cn, then every point of �Bn is a peakpoint for polynomials, and so as an immediate 
onsequen
e of Theorem 1.3 we have thefollowing:Corollary 1.4 If � � �Bn is a 
ompa
t polynomially 
onvex real-analyti
 variety, thenP (�) = C(�). 2



In order to explain the idea of the proof of Theorem 1.3, we re
all the proof of The-orem 1.2. The main tool is a result of H�ormander and Wermer [8℄ (proved by them forsuÆ
ently smooth manifolds, and later generalized by O'Farrell, Preskenis and Walsh [11℄to C1 manifolds) that, in essen
e, redu
es questions of approximation on subsets of realsubmanifolds of Cn to approximation on the points where the tangent spa
e to the manifold
ontains a 
omplex line. The following dual formulation suÆ
es (see the dis
ussion followingProposition 2.3 of [3℄):Theorem 1.5 Let X be a polynomially 
onvex 
ompa
t subset of Cn, and let X0 be a
ompa
t polynomially 
onvex subset of X su
h that X n X0 is a totally real submanifold ofCn, of 
lass C1. If � is a measure on X su
h that RX f d� = 0 for all f 2 P (X), then � issupported on X0. In parti
ular, P (X) = C(X) if and only if P (X0) = C(X0).To establish Theorem 1.2, one shows, under assumptions (i) and (ii), that the set ofpoints in X where � has a 
omplex tangent is a real-analyti
 variety V of dimension atmost two. To show that P (X) = C(X), it is enough, by Theorem 1.5, to show thatP (� X [ V ) = C(� X [ V ). Applying Theorem 1.5 again, one redu
es the prob-lem to showing that P (�X [V �) = C(�X [V �), where V � is the union of the singular set ofthe variety V together with the set of regular points of V at whi
h V has a 
omplex tangent.Theorem 1.1 implies that P (�X) = C(�X). Using the peak-point property (ii), V � 
an beshown to have two-dimensional Hausdor� measure zero. This suÆ
es to show (see Lemma3.1 of [3℄) that P (�X [ V �) = C(�X [ V �), and 
ompletes the proof.The fa
t that the two-dimensional Hausdor� measure of V � is zero is essential to the proofwe have just des
ribed; this allows one to apply the Hartogs-Rosenthal theorem on rationalapproximation in the plane to 
ertain proje
tions. In attempting to generalize Theorem 1.2to real-analyti
 manifolds of dimension greater than three, one would like to pro
eed in asimilar way: redu
e the problem of approximation on � to approximation on V , where V isthe set of points in � at whi
h � has a 
omplex tangent. Assumptions (i) and (ii) imply, asbefore, that V is a variety whose dimension is stri
tly less than the dimension of �, and soone hopes to pro
eed by indu
tion on dimension, repeatedly applying Theorem 1.5 as before,eventually redu
ing to approximation on a suÆ
iently small set (two-dimensional Hausdor�3



measure zero). The fa
t that at ea
h stage one has to 
onsider approximation on varietiesmakes it desirable, for purposes of the indu
tion, to prove Theorem 1.3 in the 
ategory ofvarieties, rather than restri
ting to real-analyti
 manifolds. However, a problem arises: thesingular set of a real-analyti
 variety (unlike the 
ase of 
omplex-analyti
 varieties) need notitself be a variety. This problem for
es a slightly di�erent approa
h. We show that lo
allythe union of the set of 
omplex tangent points and the singular set of ea
h variety in questionis 
ontained in a variety of smaller dimension, and this allows the indu
tion to pro
eed.2. Real-Analyti
 VarietiesIn this se
tion we review the basi
 fa
ts about real-analyti
 varieties ne
essary for the proofof Theorem 1.3.If U is an open subset of Rm, C!(U) will denote the set of all real-valued fun
tions whi
hare real-analyti
 in U . If F is a subset of C!(U), we setVU(F) = fx 2 U : f(x) = 0; 8f 2 Fg:A subset � of an open set 
 � Rm is said to be a (real-analyti
) variety in 
 if for ea
hp 2 
 there exists an open neighborhood U � 
 of p and a �nite set F � C!(U) with� \ U = VU(F). It follows that � is a relatively 
losed subset of 
; we say � is a 
ompa
tvariety in 
 if it is a 
ompa
t subset of 
. The 
lass of varieties is 
losed under �nite unionsand interse
tions.The dimension of a real-analyti
 variety � is the largest natural number d su
h that forsome p 2 �, there exists a neighborhood U of p su
h that �\U is a real-analyti
 submanifoldof U of dimension d, and the set of regular points of �, denoted �reg, is the set of pointsp 2 � with this property. �reg is a relatively open subset of �. Its 
omplement, the set ofsingular points of �, is denoted �sing.A variety � in 
 is said to be irredu
ible if whenever � = �1 [ �2 with �1;�2 varietiesin 
, then either � = �1 or � = �2. If � is an irredu
ible variety in 
, and �0 is a propersubset of � that is also a variety in 
, then dim(�) > dim(�0) (see [6℄, Theorem 3.4.8,assertion (15)). 4



Unlike the 
ase of 
omplex analyti
 varieties, the singular set of a real-analyti
 varietyneed not itself be a variety. Moreover, a real-analyti
 variety is not ne
essarily the union ofa �nite number of irredu
ible varieties. However, we have the following lo
al properties (see[10℄, p. 31-42, espe
ially Proposition 5, and [6℄, se
tion 3.4.10):(a) If � is irredu
ible, then for ea
h p 2 �sing there exists a neighborhood U of p and afun
tion Æ 2 C!(U) not vanishing identi
ally on � \ U so that�sing \ U � VU(fÆg) \ � � �Moreover, if d = dim(�), there is a �nite set G = fg1; : : : ; gm�dg � C!(U) so that(� \ U) n� = VUn�(G)with dg1; : : : ; dgm�d linearly independent on U n�;(b) If � is a variety in 
, then for ea
h p 2 � there is a neighborhood U of p and a �nitenumber of irredu
ible varieties Z1; : : : ; Zs in U so that � \ U = [sk=1Zk;(
) Let Hr denote r-dimensional Hausdor� measure. If � is a variety of dimension d in 
then for ea
h 
ompa
t subset X of 
, Hd(� \X) <1 and Hd�1(�sing \X) <1.We now 
onsider real-analyti
 varieties in an open subset 
 of Cn, identi�ed with R2n.If M is a real submanifold of 
, of 
lass C1, we say that M has a 
omplex tangent at p 2Mif the real tangent spa
e TpM of M at p 
ontains a nontrivial 
omplex subspa
e of Cn. Thisis equivalent to the 
ondition that the restri
tion to M of any (m; 0) form vanishes at p,where m is the real dimension of M (see [3℄, Lemma 2.5). The manifold M is said to betotally real if it has no 
omplex tangents. If � is a variety in 
, �
 will denote the set ofpoints p 2 �reg su
h that �reg has a 
omplex tangent at p. By expressing the vanishing ofea
h (m; 0) form as the vanishing of an (m�m) minor of the matrix J = ((�zl=�uk)), where(u1; : : : ; um) are lo
al real-analyti
 
oordinates onM , we see that �
 is a variety in 
n�sing.Set �� = �sing [�
. Note that �n�� is a totally real, real-analyti
 submanifold of 
n�sing.
5



Lemma 2.1 Let � be a d-dimensional variety in an open set 
 � Cn. Assume dim(�
) < d.Then for ea
h p 2 ��, there exists an open neighborhood U � 
 of p and a variety Y in Uwith dim(Y ) < d and �� \ U � Y � � \ UProof: Fix p 2 �, take U and Z1; : : : ; Zs as in (b). Let dj = dim(Zj), and setJ = fj : 1 � j � s and dj = dg. For ea
h j 2 J , we pro
eed as follows: shrinking Uif ne
essary, using (a) we obtain a fun
tion Æj 2 C!(U), not vanishing identi
ally on Zj \U ,with (Zj)sing � �j � VU(fÆjg) \ Zjand a set G(j) � C!(U) of 2n� dj fun
tions whose di�erentials are linearly independent onU n�j, so that Zj n�j = VUn�j (G(j)):Using the fun
tions in G(j) and the remarks on the 
omplex tangent set pre
eding the state-ment of Lemma 2.1, we may 
onstru
t a family �(j) of fun
tions in C!(U) so that(Zj)
 = VUn�j (�(j) [ G(j)):Set Xj = �j [ VU(�(j) [G(j)). Then Xj is a variety in U 
ontaining Z�j . Our assumption ondim(�
) together with the irredu
ibility of Zj implies dim(Xj) < d. Let X be the union ofthe Xj, j 2 J . Let Z be the union of all pairwise interse
tions of the Zj, together with theunion of all Zj; j =2 J . Set Y = X [ Z. Then �� \ U � Y � � \ U , and dim(Y ) < d. 23. Proof of Theorem 1.3We let B(p; r) denote the open ball of radius r 
entered at p. We will use repeatedly thefa
t (Lemma 2.1 of [3℄) that properties (i) and (ii) are inherited by 
ompa
t subsets of �.
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Lemma 3.1 Let � be a 
ompa
t d-dimensional variety in an open set 
 � Cn. Assumethat � is polynomially 
onvex and that ea
h point of � is a peak point for P (�). Then forea
h p 2 �, there exist arbitrarily small r > 0 and varieties Y1; : : : ; Yd in B(p; r) so that ifY0 = � \B(p; r), then for 1 � j � d we have(1) Y �j�1 � Yj � Yj�1;(2) dim(Yj) � d� j;Proof: The proof is by indu
tion on j, 1 � j � d. Note that the hypotheses on � implythat �
 has no interior relative to � (see [3℄, Lemma 3.2). Hen
e dim(�
) < d. We 
hooser1; Y1 as follows: in 
ase p 2 � n ��, take r1 > 0 so that B(p; r1) \ �� = ;, and take Y1 = ;.If p 2 ��, Lemma 2.1 implies that there exists r1 > 0 and a variety Y1 in B(p; r1) so thatdim(Y1) � d� 1 and B(p; r1) \ �� � Y1 � B(p; r1) \ �Note that in either 
ase, both (1) and (2) hold for j = 1. Now assume by indu
tion that forsome k with 1 � k < d, r1; : : : ; rk > 0 and Y1; : : : ; Yk have been 
hosen with r1 � r2 : : : � rk,and Y1; : : : ; Yk varieties in B(p; rk), so that (1) and (2) hold for all j � k. We obtainrk+1; Yk+1 as follows: if p 2 Yk n Y �k , take Yk+1 = ; and rk+1 = rk. If p 2 Y �k , use Lemma 2.1to produ
e rk+1, 0 < rk+1 � rk and a variety Yk+1 withB(p; rk+1) \ Y �k � Yk+1 � B(p; rk+1) \ Ykand dim(Yk+1) < dim(Yk) � d� k (here we again use Lemma 3.2 of [3℄). Then (1) and (2)will hold for j � k + 1. By indu
tion, we 
an thus 
hoose r1; : : : ; rd > 0 and Y1; : : : ; Yd sothat (1) and (2) hold for j � d; take r = rd. 2We now turn to the proof of Theorem 1.3. By duality, it suÆ
es to show that any measure� on � with the property that Z� g d� = 0 (1)for all g 2 P (�) must be the zero measure. Fix a measure � satisfying (1). We will showthat for ea
h point p 2 �, there is a neighborhood of p lying outside the support of �. Fix7



p 2 �, and 
hoose r > 0, and Y0; : : : ; Yd as 
onstru
ted in Lemma 3.1. Now there must be alargest number j su
h that � is supported on (� nB(p; r)) [ Yj. But for j < d,[(� nB(p; r)) [ Yj℄ n [(� nB(p; r)) [ Yj+1℄ = Yj n Yj+1is a totally real submanifold of Cn. By Theorem 1.5, if � is supported on (� nB(p; r))[ Yj,then � is supported on (�nB(p; r))[Yj+1. By indu
tion, � is supported on (�nB(p; r))[Yd.Note that dim(Yd) = 0, so the variety Yd is a dis
rete point set, and therefore 
ountable.Sin
e every point of � is a peak point for P (�), � 
annot have nonzero mass at any singlepoint, and hen
e j�j(Yd) = 0. Thus � is supported on � nB(p; r), and the proof is 
omplete.2Referen
es[1℄ H. Alexander and J. Wermer, Several Complex Variables and Bana
h Algebras, Thirdedition, Springer, 1998.[2℄ J. Anderson and A. Izzo, A Peak Point Theorem for Uniform Algebras Generated bySmooth Fun
tions On a Two-Manifold, Bull. London Math. So
. 33 (2001), pp. 187-195.[3℄ J. Anderson, A. Izzo and J. Wermer, Polynomial Approximation on Three-DimensionalReal-Analyti
 Submanifolds of Cn, Pro
. Amer. Math. So
. 129 (2001), pp. 2395{2402.[4℄ R. F. Basener, On Rationally Convex Hulls, Trans. Amer. Math. So
. 182 (1973),pp. 353{381.[5℄ A. Browder, Introdu
tion to Fun
tion Algebras, Benjamin, New York 1969.[6℄ H. Federer, Geometri
 Measure Theory, Springer, 1969.[7℄ M. Freeman, Some Conditions for Uniform Approximation on a Manifold, in: Fun
tionAlgebras, F. Birtel (ed.), S
ott, Foresman and Co., Chi
ago, 1966, pp. 42{60.[8℄ L. H�ormander and J. Wermer, Uniform Approximation on Compa
t Subsets in Cn,Math. S
and 23 (1968), pp. 5-21. 8



[9℄ A. J. Izzo, Failure of Polynomial Approximation on Polynomially Convex Subsets of theSphere, Bull. London Math. So
. 28 (1996), pp. 393{397.[10℄ R. Narasimhan, Introdu
tion to the Theory of Analyti
 Spa
es, Le
ture Notes in Math-emati
s no. 25, Springer-Verlag, 1966.[11℄ A. J. O'Farrell, K.J. Preskenis, and D. Walsh, Holomorphi
 Approximation in Lips
hitzNorms, in Pro
eedings of the Conferen
e on Bana
h Algebras and Several ComplexVariables, Contemporary Math. v. 32, Ameri
an Mathemati
al So
iety, 1983.[12℄ E.L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, 1971.[13℄ J. Wermer, Polynomially Convex Disks, Math. Ann. 158 (1965), pp. 6-10.Department of Mathemati
s and Computer S
ien
eCollege of the Holy CrossWor
ester, MA 01610-2395email: anderson�math
s.holy
ross.eduDepartment of Mathemati
s and Statisti
sBowling Green State UniversityBowling Green, OH 43403email: aizzo�math.bgsu.eduDepartment of Mathemati
sBrown UniversityProviden
e, RI 02912email: wermer�math.brown.edu

9


