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Abstract

We prove: Let ¥ be a compact real-analytic variety in an open set @ C C". As-
sume (i) ¥ is polynomially convex and (ii) every point of ¥ is a peak point for P(X).
Then P(X) = C(X). This generalizes a previous result of the authors on polynomial

approximation on three-dimensional real-analytic submanifolds of C".

1. Introduction

We consider the problem of approximating arbitrary continuous functions on a compact
subset X of n-dimensional complex Euclidean space C" by polynomials in the coordinate
functions zq,...,z,. We let C'(X) denote the space of all continuous complex-valued func-
tions on X, with norm ||g||x = max{|g(2)| : 2 € X}, and we let P(X) denote the closure
of the set of polynomials in C'(X). The polynomially convex hull of X will be denoted X.
That is,

X ={z€C":|Q(2)| <||Q||x for every polynomial Q}

Two necessary conditions for P(X) = C(X) are:

—~

(i) X is polynomially convex, i.e. X = X;

)

(i) Every point of X is a peak point for P(X), i.e., given p € X, there exists f € P(X)
with f(p) =1 and |f| <1 on X \ {p}.
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With a general uniform algebra A on a compact metric space X replacing P(X), and
with (i) replaced by the condition that the maximal ideal space of A coincides with X it
was once conjectured that together these two necessary conditions for A = C(X) were also
sufficient to imply A = C'(X). However, a counterexample to this “peak-point conjecture”
was produced by Brian Cole in his 1968 thesis (see the appendix to [5], or [12], section 19).
Additional counterexamples to the peak point conjecture have been given in the context
of polynomial and rational approximation in several complex variables. In particular these
counterexamples show that conditions (i) and (ii) above are not sufficient for P(X) = C(X).

For more on this, see [2], [3], [4] and [9].
In [2] the first two authors established a peak-point result for two-manifolds:

Theorem 1.1 Let M be a compact two-dimensional differentiable manifold, and A a uniform
algebra on M generated by continuously differentiable functions. Assume that the maximal

ideal space of A is M, and that each point of M is a peak point for A. Then A = C(M).

An example of 1zzo [9] shows that Theorem 1.1 fails for uniform algebras on smooth three

manifolds. However, in [3] the authors established the following:

Theorem 1.2 Let ¥ be a real-analytic three-dimensional submanifold of C". Let X be a
compact subset of 3 such that 0X (the boundary of X relative to X2), is a two-dimensional
submanifold of class C'. If X satisfies conditions (i) and (ii) above, then P(X) = C(X).

Our purpose in this note is to extend Theorem 1.2 to real-analytic varieties of arbitrary

dimension in C". We prove:

Theorem 1.3 Let X be a compact real-analytic variety in an open set Q C C". Assume

(i) = X and (ii) every point of ¥ is a peak point for P(X). Then P(X) = C(X).

If 0B,, denotes the boundary of the unit ball in C”, then every point of 0B, is a peak
point for polynomials, and so as an immediate consequence of Theorem 1.3 we have the

following:

Corollary 1.4 If ¥ C 0B, is a compact polynomially convex real-analytic variety, then

P(X) = C(®).



In order to explain the idea of the proof of Theorem 1.3, we recall the proof of The-
orem 1.2. The main tool is a result of Hormander and Wermer [8] (proved by them for
sufficently smooth manifolds, and later generalized by O’Farrell, Preskenis and Walsh [11]
to C' manifolds) that, in essence, reduces questions of approximation on subsets of real
submanifolds of C™ to approximation on the points where the tangent space to the manifold
contains a complex line. The following dual formulation suffices (see the discussion following

Proposition 2.3 of [3]):

Theorem 1.5 Let X be a polynomially conver compact subset of C", and let Xy be a
compact polynomially convex subset of X such that X \ Xy is a totally real submanifold of
C", of class C'. If p is a measure on X such that [y f du =0 for all f € P(X), then u is
supported on Xo. In particular, P(X) = C(X) if and only if P(Xy) = C(Xy).

To establish Theorem 1.2, one shows, under assumptions (i) and (ii), that the set of
points in X where > has a complex tangent is a real-analytic variety V' of dimension at
most two. To show that P(X) = C(X), it is enough, by Theorem 1.5, to show that
POoX u V) = C(OX U V). Applying Theorem 1.5 again, one reduces the prob-
lem to showing that P(OX UV*) = C(0X UV*), where V* is the union of the singular set of
the variety V together with the set of regular points of V' at which V has a complex tangent.
Theorem 1.1 implies that P(0X) = C(0X). Using the peak-point property (ii), V* can be
shown to have two-dimensional Hausdorff measure zero. This suffices to show (see Lemma

3.1 of [3]) that P(OX U V*) = C(0X U V™), and completes the proof.

The fact that the two-dimensional Hausdorff measure of V* is zero is essential to the proof
we have just described; this allows one to apply the Hartogs-Rosenthal theorem on rational
approximation in the plane to certain projections. In attempting to generalize Theorem 1.2
to real-analytic manifolds of dimension greater than three, one would like to proceed in a
similar way: reduce the problem of approximation on ¥ to approximation on V', where V' is
the set of points in ¥ at which ¥ has a complex tangent. Assumptions (i) and (ii) imply, as
before, that V' is a variety whose dimension is strictly less than the dimension of 3, and so
one hopes to proceed by induction on dimension, repeatedly applying Theorem 1.5 as before,

eventually reducing to approximation on a sufficiently small set (two-dimensional Hausdorff



measure zero). The fact that at each stage one has to consider approximation on varieties
makes it desirable, for purposes of the induction, to prove Theorem 1.3 in the category of
varieties, rather than restricting to real-analytic manifolds. However, a problem arises: the
singular set of a real-analytic variety (unlike the case of complex-analytic varieties) need not
itself be a variety. This problem forces a slightly different approach. We show that locally
the union of the set of complex tangent points and the singular set of each variety in question

is contained in a variety of smaller dimension, and this allows the induction to proceed.

2. Real-Analytic Varieties

In this section we review the basic facts about real-analytic varieties necessary for the proof

of Theorem 1.3.

If U is an open subset of R™, C*(U) will denote the set of all real-valued functions which

are real-analytic in U. If F is a subset of C¥(U), we set
Vu(F)={zeU: f(z)=0, VfeF}.

A subset ¥ of an open set Q C R™ is said to be a (real-analytic) variety in € if for each
p € Q there exists an open neighborhood U C Q of p and a finite set F C C*(U) with
YNU = Vy(F). It follows that ¥ is a relatively closed subset of Q; we say ¥ is a compact
variety in  if it is a compact subset of €2. The class of varieties is closed under finite unions

and intersections.

The dimension of a real-analytic variety X is the largest natural number d such that for
some p € ¥, there exists a neighborhood U of p such that ¥NU is a real-analytic submanifold
of U of dimension d, and the set of regular points of ¥, denoted X,.4, is the set of points
p € X with this property. ¥,., is a relatively open subset of ¥. Its complement, the set of

singular points of X, is denoted Xy,

A variety ¥ in 2 is said to be irreducible if whenever ¥ = ¥; U ¥y with 3, ¥y varieties
in , then either ¥ = ¥; or ¥ = Y¥,. If ¥ is an irreducible variety in €2, and ¥’ is a proper
subset of ¥ that is also a variety in Q, then dim(X) > dim(X') (see [6], Theorem 3.4.8,

assertion (15)).



Unlike the case of complex analytic varieties, the singular set of a real-analytic variety
need not itself be a variety. Moreover, a real-analytic variety is not necessarily the union of
a finite number of irreducible varieties. However, we have the following local properties (see

[10], p. 31-42, especially Proposition 5, and [6], section 3.4.10):

(a) If ¥ is irreducible, then for each p € X, there exists a neighborhood U of p and a

function ¢ € C*(U) not vanishing identically on ¥ N U so that
Yeng VU C V({0 nE=A
Moreover, if d = dim(X), there is a finite set G = {g1, ..., gm_a} C C¥(U) so that
(ENU)\ A =Vinal9)
with dgi, ..., dgm q linearly independent on U \ A;

(b) If X is a variety in €, then for each p € X there is a neighborhood U of p and a finite

number of irreducible varieties Z;,..., Z, in U so that ¥ NU = Uj_, Zj;

(c) Let H" denote r-dimensional Hausdorff measure. If ¥ is a variety of dimension d in Q

then for each compact subset X of Q, HY(X N X) < oo and H* (X, N X) < o0.

We now consider real-analytic varieties in an open subset  of C”, identified with R?".
If M is a real submanifold of Q. of class C*, we say that M has a complex tangent at p € M
if the real tangent space T, M of M at p contains a nontrivial complex subspace of C". This
is equivalent to the condition that the restriction to M of any (m,0) form vanishes at p,
where m is the real dimension of M (see [3], Lemma 2.5). The manifold M is said to be
totally real if it has no complex tangents. If 3 is a variety in €2, 3. will denote the set of
points p € ¥,.4 such that 3,., has a complex tangent at p. By expressing the vanishing of
each (m,0) form as the vanishing of an (m x m) minor of the matrix J = ((0z;/0uy)), where
(u1, ..., un) are local real-analytic coordinates on M, we see that X, is a variety in '\ ¥;,,.

Set ¥* = X, UX,. Note that ¥\ X* is a totally real, real-analytic submanifold of 2\ X,,.



Lemma 2.1 Let ¥ be a d-dimensional variety in an open set Q C C". Assume dim(¥,) < d.
Then for each p € ¥*, there exists an open neighborhood U C Q of p and a variety Y in U
with dim(Y') < d and

nUucYcxnU

Proof: Fix p € X, take U and Z),...,Z, as in (b). Let d; = dim(Z;), and set
J={j:1<j<sandd; = d}. For each j € J, we proceed as follows: shrinking U
if necessary, using (a) we obtain a function ¢; € C*¥(U), not vanishing identically on Z; N U,
with
(Zj)sing € A = Vu({6;}) N Z;
and a set G C C¥(U) of 2n — d; functions whose differentials are linearly independent on
U\ Aj, so that
Zi\ Aj = Vina, (G9).

Using the functions in G and the remarks on the complex tangent set preceding the state-

ment of Lemma 2.1, we may construct a family ®U) of functions in C*(U) so that
(Z)e = VU\AJ-((I’(j) U g(j))_

Set X; = A;UVy (@D UGW). Then Xj is a variety in U containing Z¥. Our assumption on
dim(X,) together with the irreducibility of Z; implies dim(X;) < d. Let X be the union of
the X, j € J. Let Z be the union of all pairwise intersections of the Z;, together with the
union of all Z;,j ¢ J. Set Y = X UZ. Then ¥*NU CY C ¥NU, and dim(Y) <d. O

3. Proof of Theorem 1.3

We let B(p,r) denote the open ball of radius r centered at p. We will use repeatedly the
fact (Lemma 2.1 of [3]) that properties (i) and (ii) are inherited by compact subsets of .



Lemma 3.1 Let ¥ be a compact d-dimensional variety in an open set  C C". Assume
that ¥ is polynomially convex and that each point of ¥ is a peak point for P(X). Then for
each p € X2, there exist arbitrarily small r > 0 and varieties Yy, ..., Yy in B(p,r) so that if
Yo =X N B(p,r), then for 1 < j < d we have

(1) Yo, CY;CYjy

(2) dim(Y;) < d — j;

Proof: The proof is by induction on 7, 1 < 5 < d. Note that the hypotheses on ¥ imply
that 3, has no interior relative to ¥ (see [3], Lemma 3.2). Hence dim(X.) < d. We choose
r1,Y; as follows: in case p € X\ X*, take r; > 0 so that B(p,r;) N ¥* = (0, and take Y; = (.
If p € ¥* Lemma 2.1 implies that there exists r; > 0 and a variety Y; in B(p,r;) so that
dim(Y;) < d — 1 and

B(p,m)NYX* C Y, C B(p,r)NXE

Note that in either case, both (1) and (2) hold for j = 1. Now assume by induction that for
some k with 1 < k <d, ry,...,rp, >0and Y;,...,Y; have been chosen with ry > ry... > 1y,
and Y7,...,Y, varieties in B(p, ), so that (1) and (2) hold for all j < k. We obtain
Tea1, Yer1 as follows: if p € Vi, \ V¥, take Yoy = 0 and 4y = rg. If p € V¥, use Lemma 2.1

to produce 7511, 0 < 741 < 1 and a variety Y,y with
B(p,rk41) MYy C Y C B(p, 111) N Y

and dim(Yy41) < dim(Yy) < d — k (here we again use Lemma 3.2 of [3]). Then (1) and (2)
will hold for j < k£ + 1. By induction, we can thus choose r{,...,74 > 0 and Y7,...,Yy so
that (1) and (2) hold for j < d; take r = ry. O

We now turn to the proof of Theorem 1.3. By duality, it suffices to show that any measure
i on Y with the property that

[ gdu=0 (1)

for all ¢ € P(X) must be the zero measure. Fix a measure p satisfying (1). We will show

that for each point p € ¥, there is a neighborhood of p lying outside the support of u. Fix



p € X, and choose r > 0, and Yy, ..., Y, as constructed in Lemma 3.1. Now there must be a

largest number j such that p is supported on (X \ B(p,r)) UY;. But for j < d,

(S\ B.r) UVl \ 1S\ Bp.r) U Y] = Y\ Vi

is a totally real submanifold of C". By Theorem 1.5, if 4 is supported on (X \ B(p,r)) UY},
then p is supported on (X\ B(p, r))UYj41. By induction, p is supported on (X\ B(p, 7)) UYy.
Note that dim(Y;) = 0, so the variety Y; is a discrete point set, and therefore countable.
Since every point of ¥ is a peak point for P(X), u cannot have nonzero mass at any single
point, and hence |u|(Yy) = 0. Thus p is supported on ¥\ B(p, ), and the proof is complete.
(I
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