Rational Approximation on the Unit Sphere in \mathbb{C}^2

John T. Anderson, Alexander J. Izzo, and John Wermer

Abstract

For X a compact subset of the unit sphere ∂B in \mathbb{C}^2 , we seek conditions implying that R(X) = C(X). We conjecture an analogue of the Hartogs-Rosenthal theorem on rational approximation in the plane: if $X \subset \partial B$ is rationally convex and the threedimensional measure of X is zero, then R(X) = C(X). We make several contributions to the study of this conjecture, and establish rational approximation on certain Lipschitz graphs lying in ∂B . In section 3, we study algebras on certain plane sets with application to approximation on ∂B . In section 4, we weaken the Lipschitz condition, used in section 2, to a Hölder condition.

1. Introduction

For a compact set $X \subset \mathbb{C}^n$, we denote by R(X) the closure in C(X) of the set of rational functions holomorphic in a neighborhood of X. We are interested in finding conditions on X that imply that R(X) = C(X), i.e. that each continuous function on X is the uniform limit of a sequence of rational functions holomorphic in a neighborhood of X.

When n = 1, the theory of rational approximation is well developed. Examples of sets without interior for which $R(X) \neq C(X)$ are well-known, the "Swiss cheese" being a prime example. On the other hand, the Hartogs-Rosenthal theorem states that if the two-dimensional Lebesgue measure of X is zero, then R(X) = C(X).

In higher dimensions, there is an obstruction to rational approximation that does not appear in the plane. For $X \subset \mathbb{C}^n$, we denote by \widehat{X}_r the rationally convex hull of X,

²⁰⁰⁰ Mathematics Subject Classification. Primary 32E30, Secondary 46J10.

which can be defined as the set of points $z \in \mathbb{C}^n$ such that every polynomial Q with Q(z) = 0vanishes at some point of X. The condition $X = \widehat{X}_r$ (X is rationally convex) is both necessary for rational approximation and difficult to establish, in practice, when n > 1; in the plane, every compact set is rationally convex.

We will consider primarily subsets of the unit sphere ∂B in \mathbb{C}^2 . We have been motivated by a desire to obtain an analogue of the Hartogs-Rosenthal theorem in this setting. R. Basener [5] has given examples of rationally convex sets $X \subset \partial B$ for which $R(X) \neq C(X)$; his examples have the form $\{(z, w) \in \partial B : z \in E\}$, where $E \subset \mathbb{C}$ is a suitable Swiss cheese. These sets have the property that $\sigma(X) > 0$, where σ is three-dimensional Hausdorff measure on ∂B . It is reasonable to conjecture that if X is rationally convex, and $\sigma(X) = 0$, then R(X) = C(X). This paper contains several contributions to the study of this question.

In the second section we employ a construction of Henkin [10]. For a measure μ supported on ∂B orthogonal to polynomials, Henkin produced a function $K_{\mu} \in L^{1}(d\sigma)$, satisying $\overline{\partial}_{b}K_{\mu} = -4\pi^{2}\mu$. Lee and Wermer established that if $X \subset \partial B$ is rationally convex, and $\mu \in R(X)^{\perp}$ (i.e., $\int g \ d\mu = 0$ for all $g \in R(X)$), then K_{μ} extends holomorphically to the unit ball. We show that if the extension belongs to the Hardy space $H^{1}(B)$, then μ must be the zero measure. Under an assumption on the size of the rational hull of small tubular neighborhoods of X, which we call the *hull-neighborhood property*, we are able to show that K_{μ} satisfies a certain boundedness condition (see Lemma 2.4 below). From this we deduce (in the proof of Theorem 2.5 below) that $K_{\mu} \in H^{1}(B)$ if X is a subset of a Lipschitz graph lying in ∂B . Thus in this case the only measure $\mu \in R(X)^{\perp}$ is the zero measure, and so R(X) = C(X). In section 4 we show how the same result can be established for graphs of Hölder functions. Also in section 2, we give an example of a class of sets satisfying the hull-neighborhood property.

In the third section we study the algebra generated by R(E) and a smooth function fon a plane set E, and show that if this algebra has maximal ideal space E but does not contain all continuous functions on E, then there is a subset E_0 of E on which $f \in R(E_0)$ and $R(E_0) \neq C(E_0)$. We then use this result to establish rational approximation on certain graphs lying in ∂B . We use the following notation in addition to that already introduced: B will denote the unit ball in \mathbb{C}^2 , coordinates of points in \mathbb{C}^2 will either be denoted using subscripts, such as $z = (z_1, z_2)$ or by p = (z, w), according to the context. π will denote projection to the first coordinate, i.e. $\pi(z, w) = z$. If z, ζ are points in \mathbb{C}^2 , $\langle z, \zeta \rangle$ will denote the usual Hermitian inner product of z and ζ .

2. Rational Approximation and the Henkin transform

A basic tool of approximation theory in the plane is the Cauchy transform $\hat{\mu}$ of a measure μ . If μ is a finite complex measure with compact support,

$$\hat{\mu}(z) = \int \frac{d\mu(\zeta)}{\zeta - z}.$$

The Cauchy transform $\hat{\mu}(z)$ is integrable with respect to Lebesgue measure *m* on the plane, is analytic in *z* off the support of μ , and satisfies the fundamental relation

$$\frac{\partial \hat{\mu}}{\partial \overline{z}} = -\pi \mu$$

in the sense of distributions, i.e.,

(1)
$$\int \phi \, d\mu = \frac{1}{\pi} \int_{\mathbf{C}} \frac{\partial \phi}{\partial \overline{z}} \, \hat{\mu} \, dm.$$

In [10], Henkin studied global solutions to the inhomogeneous tangential Cauchy-Riemann equations on the boundary of strictly convex domains in \mathbb{C}^n . His work produced transforms analogous in certain respects to the Cauchy transform. In the particular case which concerns us, the boundary of the unit ball in \mathbb{C}^2 , Henkin introduced the kernel

$$H(z,\zeta) = \frac{\langle Tz,\zeta\rangle}{|1-\langle z,\zeta\rangle|^2}$$

where $Tz = (\overline{z_2}, -\overline{z_1})$. Given a measure μ supported on a set $X \subset \partial B$, the Henkin transform of μ is defined by

$$K_{\mu}(z) = \int_{X} H(z,\zeta) d\mu(\zeta).$$

Henkin showed that the integral defining K_{μ} converges σ -a.e on ∂B , K_{μ} is integrable with respect to $d\sigma$ on ∂B , and is smooth on $\partial B \setminus X$. Further, if μ satisfies the condition

(2)
$$\int_X P \, d\mu = 0, \quad \forall \text{ polynomials } P$$

then K_{μ} satisfies

(3)
$$\overline{\partial}_b K_\mu = -4\pi^2 \mu$$

Here $\overline{\partial}_b$ is the tangential Cauchy-Riemann operator on ∂B ; (3) means that

(4)
$$\int \phi \, d\mu = \frac{1}{4\pi^2} \int_{\partial B} K_\mu \, \overline{\partial} \phi \wedge \omega$$

for all functions ϕ smooth in a neighborhood of ∂B , where $\omega(z) = dz_1 \wedge dz_2$. An elementary proof of (4) is presented in H.P. Lee's thesis [14]; Varopoulos ([19], §3.2) has also given an exposition of Henkin's results for the case of the ball.

Note that the condition (2) that μ be orthogonal to polynomials (satified by all $\mu \in R(X)^{\perp}$) is necessary for the solution of (3), and that (3) implies that K_{μ} is a CR function on $\partial B \setminus X$. Lee and Wermer [15] proved that if X is rationally convex, then K_{μ} extends holomorphically from $\partial B \setminus X$ to B for any $\mu \in R(X)^{\perp}$:

Theorem 2.1 Suppose X is a rationally convex subset of ∂B . Let μ be a measure on X such that $\mu \in R(X)^{\perp}$, and let K_{μ} be its Henkin transform. Then there exists a function k_{μ} , holomorphic in a neighborhood of $\overline{B} \setminus X$, with $k_{\mu} = K_{\mu}$ on $\partial B \setminus X$.

We let $H^1(B)$ denote the Hardy space of functions g holomorphic on B satisfying

$$\sup\left\{\int_{\partial B} g^{(r)} \, d\sigma : r < 1\right\} < \infty$$

where $g^{(r)}(z) \equiv g(rz)$ for $z \in \partial B$. For $g \in H^1(B)$, $\lim_{r \to 1} g^{(r)} \equiv g^*$ exists σ - a.e on ∂B , and $g^{(r)} \to g^*$ as $r \to 1$ in $L^1(d\sigma)$.

Lemma 2.2 Let X be a rationally convex subset of ∂B with $\sigma(X) = 0$. Let μ be a measure on X with $\mu \perp R(X)$, and let k_{μ} be the holomorphic extension of K_{μ} to B (as in Theorem 2.1). If $k_{\mu} \in H^{1}(B)$, then μ is the zero measure.

Proof: It suffices to show that $\int \phi \, d\mu = 0$ for every function $\phi \in C^1(\mathbb{C}^2)$. Note that $\sigma(X) = 0$ implies that $k_{\mu}^* = K_{\mu}$ at σ -almost all points of ∂B , and so by (4)

$$\int_X \phi \ d\mu = \frac{1}{4\pi^2} \int_{\partial B} k_{\mu}^* \ \overline{\partial} \phi \ \wedge \omega = \lim_{r \to 1} \ \frac{1}{4\pi^2} \int_{\partial B} k_{\mu}^{(r)} \ \overline{\partial} \phi \ \wedge \omega$$

By Stokes' theorem, for fixed r

$$\int_{\partial B} k_{\mu}^{(r)} \,\overline{\partial}\phi \,\wedge\omega = \int_{B} \,\overline{\partial}(k_{\mu}^{(r)} \,\overline{\partial}\phi \wedge\omega) = \int_{B} \overline{\partial}(k_{\mu}^{(r)}) \wedge\overline{\partial}\phi \wedge\omega = 0$$

since $k_{\mu}^{(r)}$ is holomorphic in *B*. This shows that $\int \phi \, d\mu = 0$ for all $\phi \in C^1(\mathbb{C}^2)$ and completes the proof. \Box

Thus to prove that R(X) = C(X) for a rationally convex subset of ∂B with $\sigma(X) = 0$, it suffices to show that $k_{\mu} \in H^{1}(B)$ for every $\mu \perp R(X)$. We will use this approach to establish rational approximation on certain subsets of ∂B . It should be noted that the condition that $\sigma(X) = 0$ is necessary in the preceding lemma. If X is the rationally convex set constructed by Basener, $R(X) \neq C(X)$, and there exist nonzero measures $\mu \in R(X)^{\perp}$ for which $k_{\mu} \in H^{1}(B)$ ([4]).

We begin with a general estimate on the Henkin transform.

Lemma 2.3 If $X \subset \partial B$, μ is a measure supported on X, and $z \in \partial B$, then

(5)
$$|K_{\mu}(z)| \leq \frac{4\|\mu\|}{\operatorname{dist}^{4}(z,X)}$$

Proof: For any $\zeta, z \in \partial B$,

$$|z - \zeta|^2 = |z|^2 + |\zeta|^2 - 2\operatorname{Re}(\langle z, \zeta \rangle) = 2\operatorname{Re}(1 - \langle z, \zeta \rangle) \le 2|1 - \langle z, \zeta \rangle|$$

and thus for $\zeta \in X$, $z \in \partial B$,

(6)
$$\operatorname{dist}^{2}(z, X) \leq 2|1 - \langle z, \zeta \rangle|.$$

We obtain from this an estimate on Henkin's kernel H: for $z \in \partial B, \zeta \in X$

$$|H(z,\zeta)| = \frac{|\langle Tz,\zeta\rangle|}{|1-\langle z,\zeta\rangle|^2} \le \frac{4|Tz||\zeta|}{\operatorname{dist}^4(z,X)} = \frac{4}{\operatorname{dist}^4(z,X)}$$

from which (5) follows immediately, by the definition of K_{μ} . \Box

We would like to establish an estimate similar to (5) for the holomorphic extension k_{μ} of K_{μ} to *B* given by Theorem 2.1 for rationally convex *X*. We shall do this for the class of sets satisfying the following strong notion of convexity with respect to rational functions:

Definition: Given $X \subset \mathbb{C}^2$, let $X_{\epsilon} = \{z \in \mathbb{C}^n : \operatorname{dist}(z, X) < \epsilon\}$. We say that X has the hull-neighborhood property (abbreviated (H-N)) if there exists k > 0 such that, if we put $E = \pi(X)$, we have for all $\epsilon > 0$,

(7)
$$[X_{\epsilon}]_{r}^{\widehat{}} \cap \pi^{-1}(E) \subset X_{k\epsilon}.$$

In other words, given $z \in \mathbb{C}^2$ with $\pi(z) \in \pi(X)$ and $\epsilon > 0$ so that $\operatorname{dist}(z, X) > k\epsilon$, there exists a polynomial Q with Q(z) = 0 whose zero set does not meet X_{ϵ} . Since $\pi(\widehat{X}_r) = \pi(X)$, it is clear that if X has property (H-N), then X is rationally convex. Also, for $X \subset \partial B$, $[X_{\epsilon}]_r^{\widehat{}}$ is contained in the ball of radius $1 + \epsilon$ centered at the origin, so $[X_{\epsilon}]_r^{\widehat{}} \subset X_{2+\epsilon}$. Therefore for $X \subset \partial B$, there exists k > 0 such that (7) holds for all $\epsilon > 0$ if and only if there exists k > 0such that (7) holds for all sufficiently small ϵ .

Lemma 2.4 Assume $X \subset \partial B$ has property (H-N). Then there exists a constant c so that for all $p \in B$ with $\pi(p) \in \pi(X)$ and all $\mu \in R(X)^{\perp}$, we have

(8)
$$|k_{\mu}(p)| \leq \frac{c||\mu||}{\operatorname{dist}^{4}(p, X)}.$$

Proof: Fix $p \in B$, set $\delta = \operatorname{dist}(p, X)$. If $\epsilon > 0$ satisfies $k\epsilon < \delta$, then by hypothesis $p \notin [X_{\epsilon}]_{r}^{\widehat{}}$, so there exists a polynomial Q with Q(p) = 0 such that the zero set V of Q does not meet X_{ϵ} . Note that k_{μ} is continuous on $V \cap \overline{B}$ with boundary values K_{μ} on $V \cap \partial B$. By the maximum principle, $|k_{\mu}|$ attains its maximum on $V \cap \overline{B}$ at a point $p_{0} \in \partial B \cap V$, and so by Lemma 2.3,

$$|k_{\mu}(p)| \le |K_{\mu}(p_0)| \le \frac{4\|\mu\|}{\operatorname{dist}^4(p_0, X)} \le \frac{4\|\mu\|}{\epsilon^4}$$

Since the preceding inequality holds whenever $k\epsilon < \delta$, we obtain (8). \Box

Let \triangle denote the closed unit disk in the complex plane. For a function defined on \triangle , we let $\Gamma(f) \subset \mathbb{C}^2$ denote the graph of f over \triangle . Lip(\triangle) will denote the set of Lipschitz functions on \triangle , i.e, those functions f for which there exists a constant M > 0 such that $|f(z) - f(z')| \leq M|z - z'|$ for all $z, z' \in \triangle$; the least such M we call the Lipschitz constant for f. The main result of this section is the following approximation theorem for subsets of Lipschitz graphs with the hull-neighborhood property.

Theorem 2.5 Let $f \in Lip(\Delta)$. Assume $\Gamma(f) \subset \partial B$. If $X \subset \Gamma(f)$ has property (H-N), then R(X) = C(X).

Proof: We will show that under the hypotheses of Theorem 2.5, $k_{\mu} \in H^{1}(B)$ for each $\mu \in R(X)^{\perp}$. By Lemma 2.2, since $\sigma(\Gamma(f)) = 0$ this will imply that every measure in $R(X)^{\perp}$ is identically zero, and hence R(X) = C(X). Fix $\mu \in R(X)^{\perp}$, and write $k = k_{\mu}$. Let (z, w)

denote the coordinates in \mathbb{C}^2 . We show that $k \in H^1(B)$ by estimating k on the slices z = constant. To do this, we first introduce some notation and prove a lemma.

For $z \in \Delta$, let $D_z = \{w : |w| < \sqrt{1 - |z|^2}\}$, and let γ_z be the boundary of D_z . If g is a function holomorphic in B and $z \in \Delta$, we let g_z denote the slice function $g_z(w) = g(z, w), w \in D_z$. If for some s > 0 we have $g_z \in H^s(D_z)$, i.e.,

(9)
$$\sup\{\int_0^{2\pi} |g_z(r\sqrt{1-|z|^2}e^{i\theta})|^s \ d\theta : 0 < r < 1\} < \infty$$

then $g_z^*(w) = \lim_{r \to 1} g_z(rw)$ exists for almost all $w \in \gamma_z$. If in addition $g_z^*(w) \in L^1$ with respect to linear measure on γ_z , then in fact $g_z \in H^1(D_z)$ (see [8], Theorem 2.11) and $\int_0^{2\pi} |g(z, r\sqrt{1 - |z|^2}e^{i\theta})| d\theta$ is increasing in r.

Lemma 2.6 Let X be a subset of ∂B with $\sigma(X) = 0$. Suppose g is holomorphic in a neighborhood of $\overline{B} \setminus X$, $g|_{\partial B} \in L^1(d\sigma)$, and for some s > 0, $g_z \in H^s(D_z)$ for almost all $z \in \Delta$. Then $g \in H^1(B)$.

Proof: First note that if f is any positive function defined (σ - a.e.) on ∂B , then (see Proposition 1.47 of [17]),

(10)
$$\int_{\partial B} f \, d\sigma = \int_{\Delta} dm(z) \int_{0}^{2\pi} f_z(\sqrt{1-|z|^2}e^{i\phi}) \, d\phi$$

Set $G = g|_{\partial B}$. The hypotheses imply that for *m*-almost all $z \in \Delta$, we have $G|_{\gamma_z} = g_z^*$ is defined almost everywhere and integrable with respect to linear measure on γ_z , and $g_z \in H^1(D_z)$. Thus if r < 1, by (10)

$$\int_{\partial B} |g^{(r)}| d\sigma = \int_{\Delta} dm(\zeta) \int_{0}^{2\pi} |g_{rz}(r\sqrt{1-|z|^2}e^{i\phi})| d\phi$$
$$\leq \int_{\Delta} dm(z) \int_{0}^{2\pi} |g_{rz}^*(\sqrt{1-|rz|^2}e^{i\phi})| d\phi$$

The change of variables z' = rz converts the last integral above to

$$\frac{1}{r^2} \int_{|z'| \le r} dm(z') \int_0^{2\pi} |G(z', \sqrt{1 - |z'|^2} e^{i\phi})| \ d\phi \le \frac{1}{r^2} \int_{\partial B} |G| \ d\sigma$$

again by (10). Since $G \in L^1(d\sigma)$, we find that $\int_{\partial B} |g^{(r)}| d\sigma$ is bounded independently of r, so $g \in H^1(B)$. \Box By Lemma 2.6, the proof of Theorem 2.5 will be complete if we can show that for some s > 0, $k_z \in H^s(D_z)$ for almost all $z \in \Delta$. Fix $z \in \Delta$. We may assume $z \in \pi(X)$, for if $z \notin \pi(X)$, then k_z is holomorphic in a neighborhood of the closure of D_z , and there is nothing to prove. If p = (z, w), with $w \in D_z$, then for any p' = (z', f(z')),

$$|w - f(z)| \leq |w - f(z')| + |f(z') - f(z)|$$

$$\leq |w - f(z')| + M|z - z'|$$

$$\leq \sqrt{M^2 + 1} |p - p'|$$

by the Cauchy-Schwarz inequality, and so

(11)
$$|w - f(z)| \le \sqrt{M^2 + 1} \operatorname{dist}(p, X)$$

By Lemma 2.4, then

(12)
$$|k(p)| \le \frac{C}{\operatorname{dist}^4(p, X)} \le \frac{C'}{|w - f(z)|^4}$$

for some constant C'. Write $f(z) = \sqrt{1 - |z|^2} e^{i\phi}$. Then using (12), for r < 1 we obtain

$$\begin{split} \int_{0}^{2\pi} |k_{z}(r\sqrt{1-|z|^{2}}e^{i\theta})|^{1/8} d\theta &\leq \frac{C'}{(1-|z|^{2})^{1/4}} \int_{0}^{2\pi} \frac{1}{|re^{i\theta}-e^{i\phi}|^{1/2}} d\theta \\ &= C'' \int_{0}^{2\pi} \frac{1}{|re^{i\theta}-1|^{1/2}} d\theta \end{split}$$

For $|\theta| \le \pi/3$, $\cos(\theta) \le 1 - \theta^2/4$, which implies

$$|1 - re^{i\theta}|^{1/2} = [1 + r^2 - 2r\cos(\theta)]^{1/4} \ge [(1 - r)^2 + \theta^2/4]^{1/4} \ge \sqrt{\theta}/\sqrt{2}$$

It follows from this that the last integral is bounded independently of r, and so $k \in H^{1/8}(D_z)$ for all $z \in \Delta$. This completes the proof. \Box

Remark: The special case of Theorem 2.5 when f is continuously differentiable on \triangle can also be obtained as a direct consequence of Theorem 4.3 of ([2]).

We close this section by exhibiting a class of sets with the hull-neighborhood property. Recall that a real submanifold of \mathbf{C}^n is said to be totally real if at each point, its tangent space contains no complex line.

Theorem 2.7 Let $f \in C^{\infty}(\Delta)$, and assume $\Gamma(f)$ is a totally real submanifold of \mathbb{C}^2 . If X is a compact polynomially convex subset of $\Gamma(f)$, then X has property (H-N).

Proof: For $p \in \mathbb{C}^2$, let $\delta(p) = \operatorname{dist}(p, \Gamma(f))$. Since $\Gamma(f)$ is totally real, a result of Hörmander and Wermer ([12], or see [1], Lemma 17.2) implies that there is a neighborhood U of X in \mathbb{C}^2 such that δ^2 is strictly plurisubharmonic on U.

Since X is polynomially convex, there exists a compact polynomial polyhedron Π , $X \subset \Pi \subset U$, where $\Pi = \{|P_j| \leq 1, j = 1, ..., k\}$ with each P_j a polynomial. We may assume that $|P_j| \leq 1/2$ on X, for each j. Define a function Ψ on \mathbb{C}^2 by

$$\Psi = \max\{|P_1|, \dots, |P_k|\} - \frac{3}{4}$$

Then $\Psi = 1/4$ on $\partial \Pi$ and $\Psi < 0$ on X.

Choose $\epsilon_0 > 0$ so small that $\Psi < 0$ on X_{ϵ_0} . We will show that whenever $p \in \mathbb{C}^2$ satisfies $\pi(p) \in \pi(X)$ and $\operatorname{dist}(p, X) > \sqrt{M^2 + 1} \epsilon$ for some $\epsilon < \epsilon_0$, where M is the Lipschitz constant for f, then there is a polynomial Q with Q(p) = 0 whose zero set does not meet X_{ϵ} . By the remarks following the definition of (H-N), this will complete the proof.

Choose a constant $\kappa > 0$ so that $\kappa \delta^2(p) < 1/4$ for all $p \in \partial \Pi$. Then on a neighborhood N of $\partial \Pi$ we have $\kappa \delta^2 < \Psi$. Define F as follows:

$$F = \begin{cases} \max(\Psi, \kappa \delta^2) & \text{on } \Pi \cup N \\ \Psi & \text{on } \mathbf{C}^2 \setminus \Pi \end{cases}$$

Then F is well-defined and plurisubharmonic on \mathbf{C}^2 . For $\epsilon < \epsilon_0$ set

$$\Lambda_{\epsilon} = \{ q \in \mathbf{C}^2 : F(q) \le \kappa \epsilon^2 \}$$

Then Λ_{ϵ} is compact, and $X_{\epsilon} \subset \Lambda_{\epsilon}$, for if $\operatorname{dist}(q, X) < \epsilon$, then $\Psi(q) < 0$, so

$$F(q) = \kappa \delta^2(q) \le \kappa \operatorname{dist}^2(q, X) < \kappa \epsilon^2$$

implying $q \in \Lambda_{\epsilon}$. Also, since F is plurisubharmonic, Λ_{ϵ} is polynomially convex (this follows from [11], Theorem 4.3.4). Suppose p satisfies $\operatorname{dist}(p, X) > \sqrt{M^2 + 1} \epsilon$. We distinguish two cases: either (1) $F(p) = \kappa \delta^2(p)$, or (2) $F(p) = \Psi(p)$. In the first case, we find as in the proof of Theorem 2.5 that if we write p in coordinates as p = (z, w) then $|w - f(z)| \leq \sqrt{M^2 + 1} |p - p'|$ whenever $p' \in \Gamma(f)$, implying $\operatorname{dist}(p, X) \leq \sqrt{M^2 + 1} \delta(p)$, and so

$$F(p) \ge \frac{\kappa \operatorname{dist}^2(p, X)}{M^2 + 1} > \kappa \epsilon^2$$

and thus $p \notin \Lambda_{\epsilon}$. By the polynomial convexity of Λ_{ϵ} , there exists a polynomial Q, nonvanishing on Λ_{ϵ} with Q(p) = 0; since $X_{\epsilon} \subset \Lambda_{\epsilon}$, Q does not vanish on X_{ϵ} . In the second case, we must have $\Psi(p) > 0$, and so $|P_j(p)| > 3/4$ for some j. Set $Q = P_j - P_j(p)$. Then Q(p) = 0, but since $\Psi < 0$ on X_{ϵ} , $|P_j| < 3/4$ on X_{ϵ} , so Q cannot vanish on X_{ϵ} . In both cases, we have found the required polynomial Q, and the proof is complete. \Box

Finally we note that the approach in this section is related to the problem of determining when X is a removable singularity for integrable CR functions. In this context, we may say that X is removable for L^1 CR functions if X has the property that whenever $g \in L^1(d\sigma)$ and $\bar{\partial}_b g = 0$ off X, then g extends to a function in $H^1(B)$ (see [3]). By (3), $\bar{\partial}_b K_{\mu} = 0$ off X whenever $\mu \in R(X)^{\perp}$, and hence by the remarks following Lemma 2.2, R(X) = C(X)for any subset of ∂B with $\sigma(X) = 0$ that is removable for L^1 CR functions. The paper [16] contains an extensive bibliography on this question and a survey of recent results.

3. The algebra generated by R(E) and a smooth function

In this section we study the algebra generated by R(E) and a smooth function on a planar set E. We then apply our results to the question of rational approximation on certain subsets of ∂B .

If \mathcal{A} is a uniform algebra on a compact space X, we write $\mathcal{M}(\mathcal{A})$ for its maximal ideal space, and view elements of $\mathcal{M}(\mathcal{A})$ as homomorphisms $m : \mathcal{A} \to \mathbb{C}$. We will identify each point $x \in X$ with the point evaluation $m_x \in \mathcal{M}(\mathcal{A})$ defined by $m_x(h) = h(x)$. When $\mathcal{A} = R(X)$ for some compact subset $X \subset \mathbb{C}^n$, then $\mathcal{M}(\mathcal{A})$ can be identified with \widehat{X}_r via $m \in \mathcal{M}(\mathcal{A}) \to (m(z_1), \ldots, m(z_n))$ where (z_1, \ldots, z_n) are the coordinate functions. This correspondence is a homeomorphism.

If \mathcal{F} is a family of continuous functions on a compact space X, then $[\mathcal{F}]$ will denote the algebra generated by \mathcal{F} , i.e., the smallest closed subalgebra of C(X) containing \mathcal{F} . In [20], J. Wermer studied the algebra $\mathcal{A} = [z, f]$ on Δ generated by the identity function z and a smooth function f. Under the assumption that $\mathcal{M}(\mathcal{A}) = \Delta$, he showed that \mathcal{A} consists of those continuous functions on Δ whose restrictions to the zero set E of $\partial f/\partial \bar{z}$ lie in R(E). We will make use of the following generalization of Wermer's result due to Anderson and Izzo ([2], Theorem 4.2):

Lemma 3.1 Let \mathcal{G} be a collection of continuously differentiable functions on \triangle , and set $\mathcal{A} = [\mathcal{G}]$. Assume the function z lies in \mathcal{A} , and that $\mathcal{M}(\mathcal{A}) = \triangle$. Set $T = \{\zeta \in \triangle : \frac{\partial g}{\partial z}(\zeta) = 0, \forall g \in \mathcal{G}\}$. Then $\mathcal{A} = \{g \in C(\triangle) : g|_T \in R(T)\}$.

In order to pass from algebras on compact subsets of the disk to algebras on the disk, we will need two results on extension algebras. The first is due to Bear [6]:

Lemma 3.2 Let \mathcal{A}_0 be a uniform algebra on a compact subset X_0 of a compact space X. Put $\mathcal{A} = \{h \in C(X) : h|_{X_0} \in \mathcal{A}_0\}$. If $\mathcal{M}(\mathcal{A}_0) = X_0$, then $\mathcal{M}(\mathcal{A}) = X$.

Lemma 3.3 Let \mathcal{A} , \mathcal{A}_0 , X, and X_0 be as in Lemma 3.2. Assume \mathcal{G}_0 is a subset of $C(X_0)$ with $[\mathcal{G}_0] = \mathcal{A}_0$. Let $\mathcal{G} \subset C(X)$ and assume (1) $[\mathcal{G}]$ contains all continuous functions on Xvanishing in a neighborhood of X_0 , and (2) $\mathcal{G}|_{X_0} = \mathcal{G}_0$. Then $[\mathcal{G}] = \mathcal{A}$.

Proof: Clearly $\mathcal{G} \subset \mathcal{A}$, and so it suffices to show, given $h \in \mathcal{A}$, that $\int h \, d\mu = 0$ for all measures $\mu \in [\mathcal{G}]^{\perp}$. For any such measure the hypothesis that $[\mathcal{G}]$ contains all continuous functions vanishing near X_0 implies $\operatorname{supp}(\mu) \subset X_0$. Since $h|_{X_0} \in \mathcal{A}_0$, we may choose a sequence h_j of polynomials in elements of \mathcal{G}_0 converging to h on X_0 . By hypothesis (2), we may assume each h_j is the restriction to X_0 of an element of $[\mathcal{G}]$. Then

$$\int_X h \, d\mu = \int_{X_0} h \, d\mu = \lim_{j \to \infty} \int_{X_0} h_j \, d\mu = 0$$

since $\mu \in [\mathcal{G}]^{\perp}$. \Box

Given a compact $E \subset \mathbf{C}$, we write $f \in C^1(E)$ if f is the restriction to E of a function continuously differentiable in some neighborhood of E.

Theorem 3.4 Let E be a compact subset of \mathbf{C} , and take $f \in C^1(E)$. Assume $\mathcal{M}([R(E), f]) = E$. If $[R(E), f] \neq C(E)$, then there exists a compact subset E_0 of E such that $R(E_0) \neq C(E_0)$ and $f|_{E_0} \in R(E_0)$.

Proof: Let E and f satisfy the hypotheses of the theorem. Without loss of generality, E is a compact subset of the open unit disk. Set $\mathcal{A} = \{h \in C(\Delta) : h|_E \in [R(E), f]\}$. Since $\mathcal{M}([R(E), f]) = E$ by hypothesis, Lemma 3.2 implies that $\mathcal{M}(\mathcal{A}) = \Delta$. Fix any smooth extension of f to Δ (we denote the extension by f, also). Since R(E) is generated by the set of functions holomorphic in a neighborhood of E, Lemma 3.3 implies that \mathcal{A} is generated by the set \mathcal{G} consisting of f together with all functions smooth on Δ and holomorphic in a neighborhood of E. Set $E_0 = \{\zeta \in \Delta : \partial g/\partial \bar{z}(\zeta) = 0, \forall g \in \mathcal{G}\}$. Clearly $E_0 \subset E$. By Lemma 3.1, $\mathcal{A} = \{h \in C(X) : h|_{E_0} \in R(E_0)\}$. Since $f \in \mathcal{A}, f|_{E_0} \in R(E_0)$. If $R(E_0) = C(E_0)$, then $\mathcal{A} = C(X)$ and hence [R(E), f] = C(E), contrary to hypothesis. \Box

As mentioned in the introduction, Basener gave examples of rationally convex subsets X of ∂B with $R(X) \neq C(X)$. To explain Basener's construction, we recall the notion of a Jensen measure. Given a uniform algebra \mathcal{A} on X, a probability measure σ on X is said to be a Jensen measure for $m \in \mathcal{M}(\mathcal{A})$ if for every $h \in \mathcal{A}$,

$$\log |m(h)| \le \int_X \log |h| \, d\sigma.$$

If m is point evaluation at some $p_0 \in X$, the point mass δ_{p_0} at p_0 is trivially a Jensen measure for m. Every Jensen measure σ for m represents m: $m(h) = \int h \, d\sigma$ for all $h \in \mathcal{A}$. Basener's assumption for $X \subset \partial B$ was the following condition on $E = \pi(X)$:

(B) For all $z_0 \in E$ the only Jensen measure for z_0 relative to R(E) is δ_{z_0} .

It can be shown (see [7], Theorem 3.4.11) that (B) is equivalent to the condition that the set of functions harmonic in a neighborhood of E is dense in C(E). Examples of sets $E \subset \mathbf{C}$ satisfying (B) for which $R(E) \neq C(E)$ can be found in [7], p. 193 ff. and [18], §27.

Basener showed that if $X \subset \partial B$ has the form $X = \{(z, w) \in \partial B : z \in E\}$ where E is a compact subset of the open unit disk satisfying (B), then X is rationally convex; in fact, his proof shows (see also [18], §19.8) that the same is true for any $X \subset \partial B$ for which $\pi(X) = E \subset int(\Delta)$ satisfies (B). Our next lemma has a similar flavor:

Lemma 3.5 Let E be a compact subset of C satisfying (B), and let $f \in C(E)$. Then $\mathcal{M}([R(E), f]) = E$.

This can be proved by an argument essentially the same as that of Basener mentioned above, but a simpler approach is to note that it is an immediate consequence of the following easy lemma (which strengthens Lemma 2.2 of [13]). **Lemma 3.6** Suppose \mathcal{A} and \mathcal{B} are uniform algebras on a compact space X and $\mathcal{A} \subset \mathcal{B}$. If $x \in X$ is such that the only Jensen measure for x relative to \mathcal{A} is δ_x , and $m \in \mathcal{M}(\mathcal{B})$ coincides with point evaluation at x when restricted to \mathcal{A} , then m is point evaluation at x on all of \mathcal{B} .

Proof: Let μ be a Jensen measure for m (as a functional on \mathcal{B}). Then obviously μ is a Jensen measure for the restriction of m to \mathcal{A} , i.e., for point evaluation at x on \mathcal{A} . Hence by hypothesis $\mu = \delta_x$. Since μ represents m, we conclude that m is point evaluation at x on all of \mathcal{B} . \Box

If \mathcal{A} is a uniform algebra on X, a point $p \in X$ is a peak point for A if there exists a function $f \in A$ with f(p) = 1 while |f| < 1 on $X \setminus \{p\}$. When X is a compact planar set, Bishop proved that R(X) = C(X) if almost every point of X is a peak point for R(X).

Theorem 3.7 Let E be a compact subset of C satisfying (B), and let $f \in C^1(E)$. If almost every point of E is a peak point for [R(E), f], then [R(E), f] = C(E).

Proof: Suppose that $[R(E), f] \neq C(E)$. By Lemma 3.5, $\mathcal{M}([R(E), f]) = E$. We may then apply Theorem 3.4 to produce a compact subset E_0 of E with $f|_{E_0} \in R(E_0)$ and $R(E_0) \neq C(E_0)$. If $z \in E_0$ is a peak point for [R(E), f], choose $g \in [R(E), f]$ peaking at z. Since $g|_{E_0} \in R(E_0)$, the point z is a peak point for $R(E_0)$. By Bishop's peak-point theorem, $R(E_0) = C(E_0)$, which is a contradiction. \Box

Corollary 3.8 Let E be a compact subset of the open unit disk satisfying (B), let $f \in C^1(E)$, and set $X = \{(z, f(z)) : z \in E\}$. If $X \subset \partial B$, then R(X) = C(X).

Proof: Let \mathcal{A} be the algebra on X generated by r(z) and w, where (z, w) are coordinates in \mathbb{C}^2 and r ranges over R(E). Since $\mathcal{A} \subset R(X)$, it suffices to show that $\mathcal{A} = C(X)$. Moreover, \mathcal{A} is isometrically isomorphic to the algebra on E generated by R(E) and f, and therefore it is enough to show [R(E), f] = C(E). Each point of ∂B is a peak point for polynomials, hence is a peak point for \mathcal{A} , and so every point of E is a peak point for [R(E), f]. By Theorem 3.7, [R(E), f] = C(E). \Box

It is reasonable to conjecture that Theorems 3.4 and 3.7 remain valid if the hypothesis that $f \in C^1(E)$ is replaced by the assumption that f is merely continuous on E. We have no proof or counterexample.

Finally, we remark that Theorem 3.7 can also be obtained in a different fashion by combining our Lemma 3.5 with Theorem 4.3 of [2].

4. Approximation on Hölder graphs

In this section we show that the hypothesis $f \in \text{Lip}(\Delta)$ of Theorem 2.5 may be weakened to the assumption that f satisfies a Hölder condition with exponent α , $0 < \alpha < 1$, on $E = \pi(X)$. That is, we assume there exists M so that for all $z, z' \in E$,

(13)
$$|f(z) - f(z')| \le M|z - z'|^{\alpha}$$

To establish Theorem 2.5 under the hypothesis that f satisfies (13), it suffices to show (cf. (11) in the proof of Theorem 2.5) that there exists a constant C so that for $z \in E$, $w \in D_z$,

(14)
$$|w - f(z)| \le C \operatorname{dist}((z, w), X)^{\alpha}$$

From (14) it follows, as in the proof of Theorem 2.5, that if p = (z, w), we have the estimate

$$|k(p)| \le \frac{C'}{|w - f(z)|^{4/\alpha}}$$

from which we infer $k \in H^{\alpha/8}(D_z)$ for all $z \in \Delta$, completing the proof.

To establish (14), we fix p = (z, w), and take $p' = (z', f(z')) \in X$ so that dist(p, X) = |p - p'|. Then

$$\begin{aligned} |w - f(z)| &\leq |w - f(z')| + |f(z') - f(z)| \\ &\leq |w - f(z')| + M|z - z'|^{\alpha} \\ &\leq (M^2 + 1)^{1/2} (|w - f(z')|^2 + |z - z'|^{2\alpha})^{1/2} \end{aligned}$$

and so

(15)
$$\frac{|w - f(z)|^{2/\alpha}}{\operatorname{dist}^2(p, X)} \le \frac{(M^2 + 1)^{1/\alpha}(|w - f(z')|^2 + |z - z'|^{2\alpha})^{1/\alpha}}{|w - f(z')|^2 + |z - z'|^2}$$

Set x = |w - f(z')|, y = |z - z'|. Note $dist^2(p, X) = x^2 + y^2 \le 4$, since p, p' are points in the closed unit ball. The quantity

$$G(x,y) = \frac{(x^2 + y^{2\alpha})^{1/\alpha}}{x^2 + y^2}$$

on the right of (15) is clearly bounded on $1 \le x^2 + y^2 \le 4$, so to complete the proof of (14), it suffices to show that G(x, y) is bounded for $x^2 + y^2 < 1$. Applying the elementary inequality $(A + B)^p \le 2^p (A^p + B^p)$ for positive A, B, p, we obtain

$$(x^{2} + y^{2\alpha})^{1/\alpha} \le 2^{1/\alpha}(x^{2/\alpha} + y^{2}) \le 2^{1/\alpha}(x^{2} + y^{2})$$

using, in the last inequality, the fact that x < 1. Therefore, $G(x, y) \leq 2^{1/\alpha}$ for $x^2 + y^2 < 1$, and the proof is finished.

References

- H. Alexander and J. Wermer, Several Complex Variables and Banach Algebras, Third edition, Springer, 1998.
- [2] J. Anderson and A. Izzo, A Peak Point Theorem for Uniform Algebras Generated by Smooth Functions On a Two-Manifold, Bull. London Math. Soc. 33 (2001), pp. 187– 195.
- [3] J. Anderson and J. Cima, Removable Singularities for L^p CR functions, Mich. Math. J.
 41 (1994), pp. 111-119.
- [4] J. Anderson and J. Cima, The Henkin Transform and Approximation on the Unit Sphere in C², unpublished manuscript.
- [5] R. F. Basener, On Rationally Convex Hulls, Trans. Amer. Math. Soc. 182 (1973), pp. 353-381.
- [6] H. S. Bear, Complex Function Algebras, Tran. Amer. Math. Soc. 90 (1959), pp. 383–393.
- [7] A. Browder, Introduction to Function Algebras, Benjamin, New York 1969.
- [8] P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [9] T. Gamelin, Uniform Algebras, 2nd ed. Chelsea, New York, 1984.
- [10] G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys, 32:3 (1977); Uspehi Mat. Nauk 32:3 (1977), pp. 57–118.

- [11] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, The Netherlands, 1979.
- [12] L. Hörmander and J. Wermer, Uniform Approximation on Compact Subsets in Cⁿ, Math. Scand 23 (1968), pp. 5–21.
- [13] A. Izzo, Uniform Algebras Generated by Holomorphic and Pluriharmonic Functions on Strictly Pseudoconvex Domains, Pac. J. Math. 171 (1995), pp. 429–436
- [14] H. P. Lee, Thesis, Brown University, 1979.
- [15] H. P. Lee and J. Wermer, Orthogonal Measures for Subsets of the Boundary of the Ball in C², in Recent Developments in Several Complex Variables, Princeton University Press, 1981, pp. 277-289.
- [16] J. Merker and E. Porten, On Removable Singularities for Integrable CR Functions, Indiana Univ. Math. J. 48 no. 3, (1999), pp. 805–856.
- [17] W. Rudin, Function Theory on the Unit Ball of \mathbb{C}^n , Springer, Berlin 1980.
- [18] E.L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, 1971.
- [19] N. Th. Varopoulos, BMO functions and the ∂-equation, Pac. J. Math. 71, no. 1 (1977), pp. 221-273.
- [20] J. Wermer, Polynomially Convex Disks, Math. Ann. 158 (1965), pp. 6–10.

Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA 01610-2395 email: anderson@mathcs.holycross.edu Department of Mathematics and Statistics Bowling Green State University Bowling Green, OH 43403 email: aizzo@math.bgsu.edu Department of Mathematics Brown University Providence, RI 02912 email: wermer@math.brown.edu