
Rational Approximation on the Unit Sphere in C2
John T. Anderson, Alexander J. Izzo, and John WermerAbstratFor X a ompat subset of the unit sphere �B in C2, we seek onditions implyingthat R(X) = C(X). We onjeture an analogue of the Hartogs-Rosenthal theorem onrational approximation in the plane: if X � �B is rationally onvex and the three-dimensional measure of X is zero, then R(X) = C(X). We make several ontributionsto the study of this onjeture, and establish rational approximation on ertain Lips-hitz graphs lying in �B. In setion 3, we study algebras on ertain plane sets withappliation to approximation on �B. In setion 4, we weaken the Lipshitz ondition,used in setion 2, to a H�older ondition.

1. IntrodutionFor a ompat set X � Cn, we denote by R(X) the losure in C(X) of the set of rationalfuntions holomorphi in a neighborhood of X. We are interested in �nding onditions onX that imply that R(X) = C(X), i.e. that eah ontinuous funtion on X is the uniformlimit of a sequene of rational funtions holomorphi in a neighborhood of X.When n = 1, the theory of rational approximation is well developed. Examples ofsets without interior for whih R(X) 6= C(X) are well-known, the \Swiss heese" beinga prime example. On the other hand, the Hartogs-Rosenthal theorem states that if thetwo-dimensional Lebesgue measure of X is zero, then R(X) = C(X).In higher dimensions, there is an obstrution to rational approximation that does notappear in the plane. For X � Cn, we denote by Xr the rationally onvex hull of X,2000 Mathematis Subjet Classi�ation. Primary 32E30, Seondary 46J10.1



whih an be de�ned as the set of points z 2 Cn suh that every polynomialQ with Q(z) = 0vanishes at some point of X. The ondition X = Xr (X is rationally onvex) is bothneessary for rational approximation and diÆult to establish, in pratie, when n > 1; inthe plane, every ompat set is rationally onvex.We will onsider primarily subsets of the unit sphere �B in C2. We have been motivatedby a desire to obtain an analogue of the Hartogs-Rosenthal theorem in this setting. R.Basener [5℄ has given examples of rationally onvex sets X � �B for whih R(X) 6= C(X);his examples have the form f(z; w) 2 �B : z 2 Eg, where E � C is a suitable Swiss heese.These sets have the property that �(X) > 0, where � is three-dimensional Hausdor� measureon �B. It is reasonable to onjeture that if X is rationally onvex, and �(X) = 0, thenR(X) = C(X). This paper ontains several ontributions to the study of this question.In the seond setion we employ a onstrution of Henkin [10℄. For a measure � supportedon �B orthogonal to polynomials, Henkin produed a funtion K� 2 L1(d�), satisying�bK� = �4�2�. Lee and Wermer established that if X � �B is rationally onvex, and� 2 R(X)? (i.e., R g d� = 0 for all g 2 R(X)), then K� extends holomorphially to theunit ball. We show that if the extension belongs to the Hardy spae H1(B), then � mustbe the zero measure. Under an assumption on the size of the rational hull of small tubularneighborhoods of X, whih we all the hull-neighborhood property, we are able to show thatK� satis�es a ertain boundedness ondition (see Lemma 2.4 below). From this we dedue(in the proof of Theorem 2.5 below) that K� 2 H1(B) if X is a subset of a Lipshitz graphlying in �B. Thus in this ase the only measure � 2 R(X)? is the zero measure, and soR(X) = C(X). In setion 4 we show how the same result an be established for graphsof H�older funtions. Also in setion 2, we give an example of a lass of sets satisfying thehull-neighborhood property.In the third setion we study the algebra generated by R(E) and a smooth funtion fon a plane set E, and show that if this algebra has maximal ideal spae E but does notontain all ontinuous funtions on E, then there is a subset E0 of E on whih f 2 R(E0)and R(E0) 6= C(E0). We then use this result to establish rational approximation on ertaingraphs lying in �B. 2



We use the following notation in addition to that already introdued: B will denote theunit ball in C2, oordinates of points in C2 will either be denoted using subsripts, suh asz = (z1; z2) or by p = (z; w), aording to the ontext. � will denote projetion to the �rstoordinate, i.e. �(z; w) = z. If z; � are points in C2, hz; �i will denote the usual Hermitianinner produt of z and �.2. Rational Approximation and the Henkin transformA basi tool of approximation theory in the plane is the Cauhy transform �̂ of a measure�. If � is a �nite omplex measure with ompat support,�̂(z) = Z d�(�)� � z :The Cauhy transform �̂(z) is integrable with respet to Lebesgue measure m on the plane,is analyti in z o� the support of �, and satis�es the fundamental relation��̂�z = ���in the sense of distributions, i.e., Z � d� = 1� ZC ���z �̂ dm:(1) In [10℄, Henkin studied global solutions to the inhomogeneous tangential Cauhy-Riemannequations on the boundary of stritly onvex domains in Cn. His work produed transformsanalogous in ertain respets to the Cauhy transform. In the partiular ase whih onernsus, the boundary of the unit ball in C2, Henkin introdued the kernelH(z; �) = hTz; �ij1� hz; �ij2where Tz = (z2;�z1). Given a measure � supported on a set X � �B, the Henkin transformof � is de�ned by K�(z) = ZX H(z; �)d�(�):Henkin showed that the integral de�ning K� onverges �-a.e on �B, K� is integrable withrespet to d� on �B, and is smooth on �B nX. Further, if � satis�es the onditionZX P d� = 0; 8 polynomials P(2) 3



then K� satis�es �b K� = �4�2�:(3)Here �b is the tangential Cauhy-Riemann operator on �B; (3) means thatZ � d� = 14�2 Z�B K� �� ^ !(4)for all funtions � smooth in a neighborhood of �B, where !(z) = dz1 ^ dz2. An elementaryproof of (4) is presented in H.P. Lee's thesis [14℄; Varopoulos ([19℄, x3.2) has also given anexposition of Henkin's results for the ase of the ball.Note that the ondition (2) that � be orthogonal to polynomials (sati�ed by all � 2R(X)?) is neessary for the solution of (3), and that (3) implies that K� is a CR funtionon �B n X. Lee and Wermer [15℄ proved that if X is rationally onvex, then K� extendsholomorphially from �B nX to B for any � 2 R(X)?:Theorem 2.1 Suppose X is a rationally onvex subset of �B. Let � be a measure on Xsuh that � 2 R(X)?, and let K� be its Henkin transform. Then there exists a funtion k�,holomorphi in a neighborhood of B nX, with k� = K� on �B nX.We let H1(B) denote the Hardy spae of funtions g holomorphi on B satisfyingsup�Z�B g(r) d� : r < 1� <1where g(r)(z) � g(rz) for z 2 �B. For g 2 H1(B), limr!1 g(r) � g� exists � - a.e on �B, andg(r) ! g� as r! 1 in L1(d�).Lemma 2.2 Let X be a rationally onvex subset of �B with �(X) = 0. Let � be a measureon X with � ? R(X), and let k� be the holomorphi extension of K� to B (as in Theorem2.1). If k� 2 H1(B), then � is the zero measure.Proof: It suÆes to show that R � d� = 0 for every funtion � 2 C1(C2). Note that �(X) = 0implies that k�� = K� at �-almost all points of �B, and so by (4)ZX � d� = 14�2 Z�B k�� �� ^ ! = limr!1 14�2 Z�B k(r)� �� ^ !By Stokes' theorem, for �xed rZ�B k(r)� �� ^ ! = ZB �(k(r)� �� ^ !) = ZB �(k(r)� ) ^ �� ^ ! = 04



sine k(r)� is holomorphi in B. This shows that R � d� = 0 for all � 2 C1(C2) and ompletesthe proof. 2Thus to prove that R(X) = C(X) for a rationally onvex subset of �B with �(X) = 0,it suÆes to show that k� 2 H1(B) for every � ? R(X). We will use this approah toestablish rational approximation on ertain subsets of �B. It should be noted that theondition that �(X) = 0 is neessary in the preeding lemma. If X is the rationally onvexset onstruted by Basener, R(X) 6= C(X), and there exist nonzero measures � 2 R(X)?for whih k� 2 H1(B) ([4℄).We begin with a general estimate on the Henkin transform.Lemma 2.3 If X � �B, � is a measure supported on X, and z 2 �B, thenjK�(z)j � 4k�kdist4(z;X)(5)Proof: For any �; z 2 �B,jz � �j2 = jzj2 + j�j2 � 2 Re(hz; �i) = 2 Re(1� hz; �i) � 2j1� hz; �ijand thus for � 2 X; z 2 �B, dist2(z;X) � 2j1� hz; �ij:(6)We obtain from this an estimate on Henkin's kernel H: for z 2 �B; � 2 XjH(z; �)j = jhTz; �ijj1� hz; �ij2 � 4jTzjj�jdist4(z;X) = 4dist4(z;X)from whih (5) follows immediately, by the de�nition of K�. 2We would like to establish an estimate similar to (5) for the holomorphi extension k� of K�to B given by Theorem 2.1 for rationally onvex X. We shall do this for the lass of setssatisfying the following strong notion of onvexity with respet to rational funtions:De�nition: Given X � C2, let X� = fz 2 Cn : dist(z;X) < �g. We say that X has thehull-neighborhood property (abbreviated (H-N)) if there exists k > 0 suh that, if we putE = �(X), we have for all � > 0, [X�℄br \ ��1(E) � Xk�:(7) 5



In other words, given z 2 C2 with �(z) 2 �(X) and � > 0 so that dist(z;X) > k�, thereexists a polynomial Q with Q(z) = 0 whose zero set does not meet X�. Sine �(Xr) = �(X),it is lear that ifX has property (H-N), then X is rationally onvex. Also, for X � �B, [X�℄bris ontained in the ball of radius 1+ � entered at the origin, so [X�℄br � X2+�. Therefore forX � �B, there exists k > 0 suh that (7) holds for all � > 0 if and only if there exists k > 0suh that (7) holds for all suÆiently small �.Lemma 2.4 Assume X � �B has property (H-N). Then there exists a onstant  so thatfor all p 2 B with �(p) 2 �(X) and all � 2 R(X)?, we havejk�(p)j � k�kdist4(p;X) :(8)Proof: Fix p 2 B, set Æ = dist(p;X). If � > 0 satis�es k� < Æ, then by hypothesis p =2 [X�℄br ,so there exists a polynomial Q with Q(p) = 0 suh that the zero set V of Q does not meetX�. Note that k� is ontinuous on V \ B with boundary values K� on V \ �B. By themaximum priniple, jk�j attains its maximum on V \ B at a point p0 2 �B \ V , and so byLemma 2.3, jk�(p)j � jK�(p0)j � 4k�kdist4(p0; X) � 4k�k�4Sine the preeding inequality holds whenever k� < Æ, we obtain (8). 2Let 4 denote the losed unit disk in the omplex plane. For a funtion de�ned on 4,we let �(f) � C2 denote the graph of f over 4. Lip(4) will denote the set of Lipshitzfuntions on 4, i.e, those funtions f for whih there exists a onstant M > 0 suh thatjf(z)� f(z0)j � M jz � z0j for all z; z0 2 4; the least suh M we all the Lipshitz onstantfor f . The main result of this setion is the following approximation theorem for subsets ofLipshitz graphs with the hull-neighborhood property.Theorem 2.5 Let f 2 Lip(4). Assume �(f) � �B. If X � �(f) has property (H-N), thenR(X) = C(X).Proof: We will show that under the hypotheses of Theorem 2.5, k� 2 H1(B) for eah� 2 R(X)?. By Lemma 2.2, sine �(�(f)) = 0 this will imply that every measure in R(X)?is identially zero, and hene R(X) = C(X). Fix � 2 R(X)?, and write k = k�. Let (z; w)6



denote the oordinates in C2. We show that k 2 H1(B) by estimating k on the slies z =onstant. To do this, we �rst introdue some notation and prove a lemma.For z 2 4, let Dz = fw : jwj < q1� jzj2g, and let z be the boundary of Dz. If gis a funtion holomorphi in B and z 2 4, we let gz denote the slie funtion gz(w) =g(z; w); w 2 Dz. If for some s > 0 we have gz 2 Hs(Dz), i.e.,supfZ 2�0 jgz(rq1� jzj2ei�)js d� : 0 < r < 1g <1(9)then g�z(w) = limr!1 gz(rw) exists for almost all w 2 z. If in addition g�z(w) 2 L1 withrespet to linear measure on z, then in fat gz 2 H1(Dz) (see [8℄, Theorem 2.11 ) andR 2�0 jg(z; rq1� jzj2ei�)j d� is inreasing in r.Lemma 2.6 Let X be a subset of �B with �(X) = 0. Suppose g is holomorphi in aneighborhood of B n X, gj�B 2 L1(d�), and for some s > 0, gz 2 Hs(Dz) for almost allz 2 4. Then g 2 H1(B).Proof: First note that if f is any positive funtion de�ned (� - a.e.) on �B, then (seeProposition 1.47 of [17℄),Z�B f d� = Z4 dm(z) Z 2�0 fz(q1� jzj2ei�) d�(10)Set G = gj�B. The hypotheses imply that for m-almost all z 2 4, we have Gjz = g�z isde�ned almost everywhere and integrable with respet to linear measure on z, and gz 2H1(Dz). Thus if r < 1, by (10)Z�B jg(r)j d� = Z4 dm(�) Z 2�0 jgrz(rq1� jzj2ei�)j d�� Z4 dm(z) Z 2�0 jg�rz(q1� jrzj2ei�)j d�The hange of variables z0 = rz onverts the last integral above to1r2 Zjz0j�r dm(z0) Z 2�0 jG(z0;q1� jz0j2ei�)j d� � 1r2 Z�B jGj d�again by (10). Sine G 2 L1(d�), we �nd that R�B jg(r)j d� is bounded independently of r,so g 2 H1(B). 2 7



By Lemma 2.6, the proof of Theorem 2.5 will be omplete if we an show that for somes > 0, kz 2 Hs(Dz) for almost all z 2 4. Fix z 2 4. We may assume z 2 �(X), forif z =2 �(X), then kz is holomorphi in a neighborhood of the losure of Dz, and there isnothing to prove. If p = (z; w), with w 2 Dz, then for any p0 = (z0; f(z0)),jw � f(z)j � jw � f(z0)j+ jf(z0)� f(z)j� jw � f(z0)j+M jz � z0j� pM2 + 1 jp� p0jby the Cauhy-Shwarz inequality, and sojw � f(z)j � pM2 + 1 dist(p;X)(11)By Lemma 2.4, then jk(p)j � Cdist4(p;X) � C 0jw � f(z)j4(12)for some onstant C 0. Write f(z) = q1� jzj2ei�. Then using (12), for r < 1 we obtainZ 2�0 jkz(rq1� jzj2ei�)j1=8 d� � C 0(1� jzj2)1=4 Z 2�0 1jrei� � ei�j1=2 d�= C 00 Z 2�0 1jrei� � 1j1=2 d�For j�j � �=3, os(�) � 1� �2=4, whih impliesj1� rei�j1=2 = [1 + r2 � 2r os(�)℄1=4 � [(1� r)2 + �2=4℄1=4 � p�=p2It follows from this that the last integral is bounded independently of r, and so k 2 H1=8(Dz)for all z 2 4. This ompletes the proof. 2Remark: The speial ase of Theorem 2.5 when f is ontinuously di�erentiable on 4 analso be obtained as a diret onsequene of Theorem 4.3 of ([2℄).We lose this setion by exhibiting a lass of sets with the hull-neighborhood property.Reall that a real submanifold of Cn is said to be totally real if at eah point, its tangentspae ontains no omplex line.Theorem 2.7 Let f 2 C1(4), and assume �(f) is a totally real submanifold of C2. If Xis a ompat polynomially onvex subset of �(f), then X has property (H-N).8



Proof: For p 2 C2, let Æ(p) = dist(p;�(f)). Sine �(f) is totally real, a result of H�ormanderand Wermer ([12℄, or see [1℄, Lemma 17.2) implies that there is a neighborhood U of X inC2 suh that Æ2 is stritly plurisubharmoni on U .Sine X is polynomially onvex, there exists a ompat polynomial polyhedron �, X �� � U , where � = fjPjj � 1; j = 1; : : : ; kg with eah Pj a polynomial. We may assume thatjPjj � 1=2 on X, for eah j. De�ne a funtion 	 on C2 by	 = maxfjP1j; : : : ; jPkjg � 34Then 	 = 1=4 on �� and 	 < 0 on X.Choose �0 > 0 so small that 	 < 0 on X�0. We will show that whenever p 2 C2 satis�es�(p) 2 �(X) and dist(p;X) > pM2 + 1 � for some � < �0, where M is the Lipshitz onstantfor f , then there is a polynomial Q with Q(p) = 0 whose zero set does not meet X�. By theremarks following the de�nition of (H-N), this will omplete the proof.Choose a onstant � > 0 so that �Æ2(p) < 1=4 for all p 2 ��. Then on a neighborhoodN of �� we have �Æ2 < 	. De�ne F as follows:F = 8><>: max(	; �Æ2) on � [N	 on C2 n �Then F is well-de�ned and plurisubharmoni on C2. For � < �0 set�� = fq 2 C2 : F (q) � ��2gThen �� is ompat, and X� � ��, for if dist(q;X) < �, then 	(q) < 0, soF (q) = �Æ2(q) � � dist2(q;X) < ��2implying q 2 ��. Also, sine F is plurisubharmoni, �� is polynomially onvex (this followsfrom [11℄, Theorem 4.3.4). Suppose p satis�es dist(p;X) > pM2 + 1 �. We distinguish twoases: either (1) F (p) = �Æ2(p), or (2) F (p) = 	(p). In the �rst ase, we �nd as in the proof ofTheorem 2.5 that if we write p in oordinates as p = (z; w) then jw�f(z)j � pM2 + 1 jp�p0jwhenever p0 2 �(f), implying dist(p;X) � pM2 + 1 Æ(p), and soF (p) � � dist2(p;X)M2 + 1 > ��29



and thus p =2 ��. By the polynomial onvexity of ��, there exists a polynomial Q, nonvan-ishing on �� with Q(p) = 0; sine X� � ��, Q does not vanish on X�. In the seond ase, wemust have 	(p) > 0, and so jPj(p)j > 3=4 for some j. Set Q = Pj � Pj(p). Then Q(p) = 0,but sine 	 < 0 on X�, jPjj < 3=4 on X�, so Q annot vanish on X�. In both ases, we havefound the required polynomial Q, and the proof is omplete. 2Finally we note that the approah in this setion is related to the problem of determiningwhen X is a removable singularity for integrable CR funtions. In this ontext, we may saythat X is removable for L1 CR funtions if X has the property that whenever g 2 L1(d�)and ��bg = 0 o� X, then g extends to a funtion in H1(B) (see [3℄). By (3), ��bK� = 0 o�X whenever � 2 R(X)?, and hene by the remarks following Lemma 2.2, R(X) = C(X)for any subset of �B with �(X) = 0 that is removable for L1 CR funtions. The paper [16℄ontains an extensive bibliography on this question and a survey of reent results.3. The algebra generated by R(E) and a smooth funtionIn this setion we study the algebra generated by R(E) and a smooth funtion on a planarset E. We then apply our results to the question of rational approximation on ertain subsetsof �B.If A is a uniform algebra on a ompat spae X, we write M(A) for its maximal idealspae, and view elements of M(A) as homomorphisms m : A ! C. We will identify eahpoint x 2 X with the point evaluation mx 2 M(A) de�ned by mx(h) = h(x). WhenA = R(X) for some ompat subset X � Cn, then M(A) an be identi�ed with Xr viam 2 M(A) ! (m(z1); : : : ; m(zn)) where (z1; : : : ; zn) are the oordinate funtions. Thisorrespondene is a homeomorphism.If F is a family of ontinuous funtions on a ompat spae X, then [F ℄ will denote thealgebra generated by F , i.e., the smallest losed subalgebra of C(X) ontaining F . In [20℄,J. Wermer studied the algebra A = [z; f ℄ on 4 generated by the identity funtion z and asmooth funtion f . Under the assumption that M(A) = 4, he showed that A onsists ofthose ontinuous funtions on 4 whose restritions to the zero set E of �f=��z lie in R(E).We will make use of the following generalization of Wermer's result due to Anderson and10



Izzo ([2℄, Theorem 4.2):Lemma 3.1 Let G be a olletion of ontinuously di�erentiable funtions on 4, and setA = [G℄. Assume the funtion z lies in A, and that M(A) = 4. Set T = f� 2 4 : �g��z (�) =0; 8g 2 Gg. Then A = fg 2 C(4) : gjT 2 R(T )g.In order to pass from algebras on ompat subsets of the disk to algebras on the disk, wewill need two results on extension algebras. The �rst is due to Bear [6℄ :Lemma 3.2 Let A0 be a uniform algebra on a ompat subset X0 of a ompat spae X.Put A = fh 2 C(X) : hjX0 2 A0g. If M(A0) = X0, then M(A) = X.Lemma 3.3 Let A; A0; X; and X0 be as in Lemma 3.2. Assume G0 is a subset of C(X0)with [G0℄ = A0. Let G � C(X) and assume (1) [G℄ ontains all ontinuous funtions on Xvanishing in a neighborhood of X0, and (2) GjX0 = G0. Then [G℄ = A.Proof: Clearly G � A, and so it suÆes to show, given h 2 A, that R h d� = 0 for allmeasures � 2 [G℄?. For any suh measure the hypothesis that [G℄ ontains all ontinuousfuntions vanishing near X0 implies supp(�) � X0. Sine hjX0 2 A0, we may hoose asequene hj of polynomials in elements of G0 onverging to h on X0. By hypothesis (2), wemay assume eah hj is the restrition to X0 of an element of [G℄. ThenZX h d� = ZX0 h d� = limj!1 ZX0 hj d� = 0sine � 2 [G℄?. 2Given a ompat E � C, we write f 2 C1(E) if f is the restrition to E of a funtionontinuously di�erentiable in some neighborhood of E.Theorem 3.4 Let E be a ompat subset of C, and take f 2 C1(E). AssumeM([R(E); f ℄) =E. If [R(E); f ℄ 6= C(E), then there exists a ompat subset E0 of E suh that R(E0) 6= C(E0)and f jE0 2 R(E0).Proof: Let E and f satisfy the hypotheses of the theorem. Without loss of generality, E isa ompat subset of the open unit disk. Set A = fh 2 C(4) : hjE 2 [R(E); f ℄g. SineM([R(E); f ℄) = E by hypothesis, Lemma 3.2 implies that M(A) = 4. Fix any smoothextension of f to 4 (we denote the extension by f , also). Sine R(E) is generated by the11



set of funtions holomorphi in a neighborhood of E, Lemma 3.3 implies that A is generatedby the set G onsisting of f together with all funtions smooth on 4 and holomorphi ina neighborhood of E. Set E0 = f� 2 4 : �g=��z(�) = 0; 8g 2 Gg. Clearly E0 � E.By Lemma 3.1, A = fh 2 C(X) : hjE0 2 R(E0)g. Sine f 2 A, f jE0 2 R(E0). IfR(E0) = C(E0), then A = C(X) and hene [R(E); f ℄ = C(E), ontrary to hypothesis. 2As mentioned in the introdution, Basener gave examples of rationally onvex subsetsX of �B with R(X) 6= C(X). To explain Basener's onstrution, we reall the notion of aJensen measure. Given a uniform algebra A on X, a probability measure � on X is said tobe a Jensen measure for m 2 M(A) if for every h 2 A,log jm(h)j � ZX log jhj d�:If m is point evaluation at some p0 2 X, the point mass Æp0 at p0 is trivially a Jensen measurefor m. Every Jensen measure � for m represents m: m(h) = R h d� for all h 2 A. Basener'sassumption for X � �B was the following ondition on E = �(X):(B) For all z0 2 E the only Jensen measure for z0 relative to R(E) is Æz0 .It an be shown (see [7℄, Theorem 3.4.11) that (B) is equivalent to the ondition that theset of funtions harmoni in a neighborhood of E is dense in C(E). Examples of sets E � Csatisfying (B) for whih R(E) 6= C(E) an be found in [7℄, p. 193 �. and [18℄, x27.Basener showed that if X � �B has the form X = f(z; w) 2 �B : z 2 Eg where Eis a ompat subset of the open unit disk satisfying (B), then X is rationally onvex; infat, his proof shows (see also [18℄, x19.8) that the same is true for any X � �B for whih�(X) = E � int(4) satis�es (B). Our next lemma has a similar avor:Lemma 3.5 Let E be a ompat subset of C satisfying (B), and let f 2 C(E). ThenM([R(E); f ℄) = E.This an be proved by an argument essentially the same as that of Basener mentioned above,but a simpler approah is to note that it is an immediate onsequene of the following easylemma (whih strengthens Lemma 2.2 of [13℄).12



Lemma 3.6 Suppose A and B are uniform algebras on a ompat spae X and A � B.If x 2 X is suh that the only Jensen measure for x relative to A is Æx, and m 2 M(B)oinides with point evaluation at x when restrited to A, then m is point evaluation at x onall of B.Proof: Let � be a Jensen measure for m (as a funtional on B). Then obviously � is aJensen measure for the restrition of m to A, i.e., for point evaluation at x on A. Hene byhypothesis � = Æx. Sine � represents m, we onlude that m is point evaluation at x on allof B. 2If A is a uniform algebra on X, a point p 2 X is a peak point for A if there exists afuntion f 2 A with f(p) = 1 while jf j < 1 on X n fpg. When X is a ompat planar set,Bishop proved that R(X) = C(X) if almost every point of X is a peak point for R(X).Theorem 3.7 Let E be a ompat subset of C satisfying (B), and let f 2 C1(E). If almostevery point of E is a peak point for [R(E); f ℄, then [R(E); f ℄ = C(E).Proof: Suppose that [R(E); f ℄ 6= C(E). By Lemma 3.5, M([R(E); f ℄) = E. We maythen apply Theorem 3.4 to produe a ompat subset E0 of E with f jE0 2 R(E0) andR(E0) 6= C(E0). If z 2 E0 is a peak point for [R(E); f ℄, hoose g 2 [R(E); f ℄ peaking at z.Sine gjE0 2 R(E0), the point z is a peak point for R(E0). By Bishop's peak-point theorem,R(E0) = C(E0), whih is a ontradition. 2Corollary 3.8 Let E be a ompat subset of the open unit disk satisfying (B), let f 2 C1(E),and set X = f(z; f(z)) : z 2 Eg. If X � �B, then R(X) = C(X).Proof: Let A be the algebra on X generated by r(z) and w, where (z; w) are oordinates inC2 and r ranges over R(E). Sine A � R(X), it suÆes to show that A = C(X). Moreover,A is isometrially isomorphi to the algebra on E generated by R(E) and f , and thereforeit is enough to show [R(E); f ℄ = C(E). Eah point of �B is a peak point for polynomials,hene is a peak point for A, and so every point of E is a peak point for [R(E); f ℄. ByTheorem 3.7, [R(E); f ℄ = C(E). 2It is reasonable to onjeture that Theorems 3.4 and 3.7 remain valid if the hypothesisthat f 2 C1(E) is replaed by the assumption that f is merely ontinuous on E. We have13



no proof or ounterexample.Finally, we remark that Theorem 3.7 an also be obtained in a di�erent fashion byombining our Lemma 3.5 with Theorem 4.3 of [2℄.4. Approximation on H�older graphsIn this setion we show that the hypothesis f 2 Lip(4) of Theorem 2.5 may be weakenedto the assumption that f satis�es a H�older ondition with exponent �, 0 < � < 1, onE = �(X). That is, we assume there exists M so that for all z; z0 2 E,jf(z)� f(z0)j �M jz � z0j�(13)To establish Theorem 2.5 under the hypothesis that f satis�es (13), it suÆes to show (f.(11) in the proof of Theorem 2.5) that there exists a onstant C so that for z 2 E, w 2 Dz,jw � f(z)j � C dist((z; w); X)�(14)From (14) it follows, as in the proof of Theorem 2.5, that if p = (z; w), we have the estimatejk(p)j � C 0jw � f(z)j4=�from whih we infer k 2 H�=8(Dz) for all z 2 4, ompleting the proof.To establish (14), we �x p = (z; w), and take p0 = (z0; f(z0)) 2 X so that dist(p;X) =jp� p0j. Then jw � f(z)j � jw � f(z0)j+ jf(z0)� f(z)j� jw � f(z0)j+M jz � z0j�� (M2 + 1)1=2(jw � f(z0)j2 + jz � z0j2�)1=2and so jw � f(z)j2=�dist2(p;X) � (M2 + 1)1=�(jw � f(z0)j2 + jz � z0j2�)1=�jw � f(z0)j2 + jz � z0j2(15)Set x = jw� f(z0)j, y = jz � z0j. Note dist2(p;X) = x2 + y2 � 4, sine p; p0 are points inthe losed unit ball. The quantityG(x; y) = (x2 + y2�)1=�x2 + y214



on the right of (15) is learly bounded on 1 � x2+y2 � 4, so to omplete the proof of (14), itsuÆes to show that G(x; y) is bounded for x2+ y2 < 1. Applying the elementary inequality(A+B)p � 2p(Ap +Bp) for positive A;B; p, we obtain(x2 + y2�)1=� � 21=�(x2=� + y2) � 21=�(x2 + y2)using, in the last inequality, the fat that x < 1. Therefore, G(x; y) � 21=� for x2 + y2 < 1,and the proof is �nished.Referenes[1℄ H. Alexander and J. Wermer, Several Complex Variables and Banah Algebras, Thirdedition, Springer, 1998.[2℄ J. Anderson and A. Izzo, A Peak Point Theorem for Uniform Algebras Generated bySmooth Funtions On a Two-Manifold, Bull. London Math. So. 33 (2001), pp. 187{195.[3℄ J. Anderson and J. Cima, Removable Singularities for Lp CR funtions, Mih. Math. J.41 (1994), pp. 111-119.[4℄ J. Anderson and J. Cima, The Henkin Transform and Approximation on the Unit Spherein C2, unpublished manusript.[5℄ R. F. Basener, On Rationally Convex Hulls, Trans. Amer. Math. So. 182 (1973),pp. 353{381.[6℄ H. S. Bear, Complex Funtion Algebras, Tran. Amer. Math. So. 90 (1959), pp. 383{393.[7℄ A. Browder, Introdution to Funtion Algebras, Benjamin, New York 1969.[8℄ P. L. Duren, Theory of Hp spaes, Aademi Press, New York, 1970.[9℄ T. Gamelin, Uniform Algebras, 2nd ed. Chelsea, New York, 1984.[10℄ G. M. Henkin, The Lewy equation and analysis on pseudoonvex manifolds, RussianMath. Surveys, 32:3 (1977); Uspehi Mat. Nauk 32:3 (1977), pp. 57{118.15
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