
Rational Approximation on the Unit Sphere in C2
John T. Anderson, Alexander J. Izzo, and John WermerAbstra
tFor X a 
ompa
t subset of the unit sphere �B in C2, we seek 
onditions implyingthat R(X) = C(X). We 
onje
ture an analogue of the Hartogs-Rosenthal theorem onrational approximation in the plane: if X � �B is rationally 
onvex and the three-dimensional measure of X is zero, then R(X) = C(X). We make several 
ontributionsto the study of this 
onje
ture, and establish rational approximation on 
ertain Lips-
hitz graphs lying in �B. In se
tion 3, we study algebras on 
ertain plane sets withappli
ation to approximation on �B. In se
tion 4, we weaken the Lips
hitz 
ondition,used in se
tion 2, to a H�older 
ondition.

1. Introdu
tionFor a 
ompa
t set X � Cn, we denote by R(X) the 
losure in C(X) of the set of rationalfun
tions holomorphi
 in a neighborhood of X. We are interested in �nding 
onditions onX that imply that R(X) = C(X), i.e. that ea
h 
ontinuous fun
tion on X is the uniformlimit of a sequen
e of rational fun
tions holomorphi
 in a neighborhood of X.When n = 1, the theory of rational approximation is well developed. Examples ofsets without interior for whi
h R(X) 6= C(X) are well-known, the \Swiss 
heese" beinga prime example. On the other hand, the Hartogs-Rosenthal theorem states that if thetwo-dimensional Lebesgue measure of X is zero, then R(X) = C(X).In higher dimensions, there is an obstru
tion to rational approximation that does notappear in the plane. For X � Cn, we denote by 
Xr the rationally 
onvex hull of X,2000 Mathemati
s Subje
t Classi�
ation. Primary 32E30, Se
ondary 46J10.1



whi
h 
an be de�ned as the set of points z 2 Cn su
h that every polynomialQ with Q(z) = 0vanishes at some point of X. The 
ondition X = 
Xr (X is rationally 
onvex) is bothne
essary for rational approximation and diÆ
ult to establish, in pra
ti
e, when n > 1; inthe plane, every 
ompa
t set is rationally 
onvex.We will 
onsider primarily subsets of the unit sphere �B in C2. We have been motivatedby a desire to obtain an analogue of the Hartogs-Rosenthal theorem in this setting. R.Basener [5℄ has given examples of rationally 
onvex sets X � �B for whi
h R(X) 6= C(X);his examples have the form f(z; w) 2 �B : z 2 Eg, where E � C is a suitable Swiss 
heese.These sets have the property that �(X) > 0, where � is three-dimensional Hausdor� measureon �B. It is reasonable to 
onje
ture that if X is rationally 
onvex, and �(X) = 0, thenR(X) = C(X). This paper 
ontains several 
ontributions to the study of this question.In the se
ond se
tion we employ a 
onstru
tion of Henkin [10℄. For a measure � supportedon �B orthogonal to polynomials, Henkin produ
ed a fun
tion K� 2 L1(d�), satisying�bK� = �4�2�. Lee and Wermer established that if X � �B is rationally 
onvex, and� 2 R(X)? (i.e., R g d� = 0 for all g 2 R(X)), then K� extends holomorphi
ally to theunit ball. We show that if the extension belongs to the Hardy spa
e H1(B), then � mustbe the zero measure. Under an assumption on the size of the rational hull of small tubularneighborhoods of X, whi
h we 
all the hull-neighborhood property, we are able to show thatK� satis�es a 
ertain boundedness 
ondition (see Lemma 2.4 below). From this we dedu
e(in the proof of Theorem 2.5 below) that K� 2 H1(B) if X is a subset of a Lips
hitz graphlying in �B. Thus in this 
ase the only measure � 2 R(X)? is the zero measure, and soR(X) = C(X). In se
tion 4 we show how the same result 
an be established for graphsof H�older fun
tions. Also in se
tion 2, we give an example of a 
lass of sets satisfying thehull-neighborhood property.In the third se
tion we study the algebra generated by R(E) and a smooth fun
tion fon a plane set E, and show that if this algebra has maximal ideal spa
e E but does not
ontain all 
ontinuous fun
tions on E, then there is a subset E0 of E on whi
h f 2 R(E0)and R(E0) 6= C(E0). We then use this result to establish rational approximation on 
ertaingraphs lying in �B. 2



We use the following notation in addition to that already introdu
ed: B will denote theunit ball in C2, 
oordinates of points in C2 will either be denoted using subs
ripts, su
h asz = (z1; z2) or by p = (z; w), a

ording to the 
ontext. � will denote proje
tion to the �rst
oordinate, i.e. �(z; w) = z. If z; � are points in C2, hz; �i will denote the usual Hermitianinner produ
t of z and �.2. Rational Approximation and the Henkin transformA basi
 tool of approximation theory in the plane is the Cau
hy transform �̂ of a measure�. If � is a �nite 
omplex measure with 
ompa
t support,�̂(z) = Z d�(�)� � z :The Cau
hy transform �̂(z) is integrable with respe
t to Lebesgue measure m on the plane,is analyti
 in z o� the support of �, and satis�es the fundamental relation��̂�z = ���in the sense of distributions, i.e., Z � d� = 1� ZC ���z �̂ dm:(1) In [10℄, Henkin studied global solutions to the inhomogeneous tangential Cau
hy-Riemannequations on the boundary of stri
tly 
onvex domains in Cn. His work produ
ed transformsanalogous in 
ertain respe
ts to the Cau
hy transform. In the parti
ular 
ase whi
h 
on
ernsus, the boundary of the unit ball in C2, Henkin introdu
ed the kernelH(z; �) = hTz; �ij1� hz; �ij2where Tz = (z2;�z1). Given a measure � supported on a set X � �B, the Henkin transformof � is de�ned by K�(z) = ZX H(z; �)d�(�):Henkin showed that the integral de�ning K� 
onverges �-a.e on �B, K� is integrable withrespe
t to d� on �B, and is smooth on �B nX. Further, if � satis�es the 
onditionZX P d� = 0; 8 polynomials P(2) 3



then K� satis�es �b K� = �4�2�:(3)Here �b is the tangential Cau
hy-Riemann operator on �B; (3) means thatZ � d� = 14�2 Z�B K� �� ^ !(4)for all fun
tions � smooth in a neighborhood of �B, where !(z) = dz1 ^ dz2. An elementaryproof of (4) is presented in H.P. Lee's thesis [14℄; Varopoulos ([19℄, x3.2) has also given anexposition of Henkin's results for the 
ase of the ball.Note that the 
ondition (2) that � be orthogonal to polynomials (sati�ed by all � 2R(X)?) is ne
essary for the solution of (3), and that (3) implies that K� is a CR fun
tionon �B n X. Lee and Wermer [15℄ proved that if X is rationally 
onvex, then K� extendsholomorphi
ally from �B nX to B for any � 2 R(X)?:Theorem 2.1 Suppose X is a rationally 
onvex subset of �B. Let � be a measure on Xsu
h that � 2 R(X)?, and let K� be its Henkin transform. Then there exists a fun
tion k�,holomorphi
 in a neighborhood of B nX, with k� = K� on �B nX.We let H1(B) denote the Hardy spa
e of fun
tions g holomorphi
 on B satisfyingsup�Z�B g(r) d� : r < 1� <1where g(r)(z) � g(rz) for z 2 �B. For g 2 H1(B), limr!1 g(r) � g� exists � - a.e on �B, andg(r) ! g� as r! 1 in L1(d�).Lemma 2.2 Let X be a rationally 
onvex subset of �B with �(X) = 0. Let � be a measureon X with � ? R(X), and let k� be the holomorphi
 extension of K� to B (as in Theorem2.1). If k� 2 H1(B), then � is the zero measure.Proof: It suÆ
es to show that R � d� = 0 for every fun
tion � 2 C1(C2). Note that �(X) = 0implies that k�� = K� at �-almost all points of �B, and so by (4)ZX � d� = 14�2 Z�B k�� �� ^ ! = limr!1 14�2 Z�B k(r)� �� ^ !By Stokes' theorem, for �xed rZ�B k(r)� �� ^ ! = ZB �(k(r)� �� ^ !) = ZB �(k(r)� ) ^ �� ^ ! = 04



sin
e k(r)� is holomorphi
 in B. This shows that R � d� = 0 for all � 2 C1(C2) and 
ompletesthe proof. 2Thus to prove that R(X) = C(X) for a rationally 
onvex subset of �B with �(X) = 0,it suÆ
es to show that k� 2 H1(B) for every � ? R(X). We will use this approa
h toestablish rational approximation on 
ertain subsets of �B. It should be noted that the
ondition that �(X) = 0 is ne
essary in the pre
eding lemma. If X is the rationally 
onvexset 
onstru
ted by Basener, R(X) 6= C(X), and there exist nonzero measures � 2 R(X)?for whi
h k� 2 H1(B) ([4℄).We begin with a general estimate on the Henkin transform.Lemma 2.3 If X � �B, � is a measure supported on X, and z 2 �B, thenjK�(z)j � 4k�kdist4(z;X)(5)Proof: For any �; z 2 �B,jz � �j2 = jzj2 + j�j2 � 2 Re(hz; �i) = 2 Re(1� hz; �i) � 2j1� hz; �ijand thus for � 2 X; z 2 �B, dist2(z;X) � 2j1� hz; �ij:(6)We obtain from this an estimate on Henkin's kernel H: for z 2 �B; � 2 XjH(z; �)j = jhTz; �ijj1� hz; �ij2 � 4jTzjj�jdist4(z;X) = 4dist4(z;X)from whi
h (5) follows immediately, by the de�nition of K�. 2We would like to establish an estimate similar to (5) for the holomorphi
 extension k� of K�to B given by Theorem 2.1 for rationally 
onvex X. We shall do this for the 
lass of setssatisfying the following strong notion of 
onvexity with respe
t to rational fun
tions:De�nition: Given X � C2, let X� = fz 2 Cn : dist(z;X) < �g. We say that X has thehull-neighborhood property (abbreviated (H-N)) if there exists k > 0 su
h that, if we putE = �(X), we have for all � > 0, [X�℄br \ ��1(E) � Xk�:(7) 5



In other words, given z 2 C2 with �(z) 2 �(X) and � > 0 so that dist(z;X) > k�, thereexists a polynomial Q with Q(z) = 0 whose zero set does not meet X�. Sin
e �(
Xr) = �(X),it is 
lear that ifX has property (H-N), then X is rationally 
onvex. Also, for X � �B, [X�℄bris 
ontained in the ball of radius 1+ � 
entered at the origin, so [X�℄br � X2+�. Therefore forX � �B, there exists k > 0 su
h that (7) holds for all � > 0 if and only if there exists k > 0su
h that (7) holds for all suÆ
iently small �.Lemma 2.4 Assume X � �B has property (H-N). Then there exists a 
onstant 
 so thatfor all p 2 B with �(p) 2 �(X) and all � 2 R(X)?, we havejk�(p)j � 
k�kdist4(p;X) :(8)Proof: Fix p 2 B, set Æ = dist(p;X). If � > 0 satis�es k� < Æ, then by hypothesis p =2 [X�℄br ,so there exists a polynomial Q with Q(p) = 0 su
h that the zero set V of Q does not meetX�. Note that k� is 
ontinuous on V \ B with boundary values K� on V \ �B. By themaximum prin
iple, jk�j attains its maximum on V \ B at a point p0 2 �B \ V , and so byLemma 2.3, jk�(p)j � jK�(p0)j � 4k�kdist4(p0; X) � 4k�k�4Sin
e the pre
eding inequality holds whenever k� < Æ, we obtain (8). 2Let 4 denote the 
losed unit disk in the 
omplex plane. For a fun
tion de�ned on 4,we let �(f) � C2 denote the graph of f over 4. Lip(4) will denote the set of Lips
hitzfun
tions on 4, i.e, those fun
tions f for whi
h there exists a 
onstant M > 0 su
h thatjf(z)� f(z0)j � M jz � z0j for all z; z0 2 4; the least su
h M we 
all the Lips
hitz 
onstantfor f . The main result of this se
tion is the following approximation theorem for subsets ofLips
hitz graphs with the hull-neighborhood property.Theorem 2.5 Let f 2 Lip(4). Assume �(f) � �B. If X � �(f) has property (H-N), thenR(X) = C(X).Proof: We will show that under the hypotheses of Theorem 2.5, k� 2 H1(B) for ea
h� 2 R(X)?. By Lemma 2.2, sin
e �(�(f)) = 0 this will imply that every measure in R(X)?is identi
ally zero, and hen
e R(X) = C(X). Fix � 2 R(X)?, and write k = k�. Let (z; w)6



denote the 
oordinates in C2. We show that k 2 H1(B) by estimating k on the sli
es z =
onstant. To do this, we �rst introdu
e some notation and prove a lemma.For z 2 4, let Dz = fw : jwj < q1� jzj2g, and let 
z be the boundary of Dz. If gis a fun
tion holomorphi
 in B and z 2 4, we let gz denote the sli
e fun
tion gz(w) =g(z; w); w 2 Dz. If for some s > 0 we have gz 2 Hs(Dz), i.e.,supfZ 2�0 jgz(rq1� jzj2ei�)js d� : 0 < r < 1g <1(9)then g�z(w) = limr!1 gz(rw) exists for almost all w 2 
z. If in addition g�z(w) 2 L1 withrespe
t to linear measure on 
z, then in fa
t gz 2 H1(Dz) (see [8℄, Theorem 2.11 ) andR 2�0 jg(z; rq1� jzj2ei�)j d� is in
reasing in r.Lemma 2.6 Let X be a subset of �B with �(X) = 0. Suppose g is holomorphi
 in aneighborhood of B n X, gj�B 2 L1(d�), and for some s > 0, gz 2 Hs(Dz) for almost allz 2 4. Then g 2 H1(B).Proof: First note that if f is any positive fun
tion de�ned (� - a.e.) on �B, then (seeProposition 1.47 of [17℄),Z�B f d� = Z4 dm(z) Z 2�0 fz(q1� jzj2ei�) d�(10)Set G = gj�B. The hypotheses imply that for m-almost all z 2 4, we have Gj
z = g�z isde�ned almost everywhere and integrable with respe
t to linear measure on 
z, and gz 2H1(Dz). Thus if r < 1, by (10)Z�B jg(r)j d� = Z4 dm(�) Z 2�0 jgrz(rq1� jzj2ei�)j d�� Z4 dm(z) Z 2�0 jg�rz(q1� jrzj2ei�)j d�The 
hange of variables z0 = rz 
onverts the last integral above to1r2 Zjz0j�r dm(z0) Z 2�0 jG(z0;q1� jz0j2ei�)j d� � 1r2 Z�B jGj d�again by (10). Sin
e G 2 L1(d�), we �nd that R�B jg(r)j d� is bounded independently of r,so g 2 H1(B). 2 7



By Lemma 2.6, the proof of Theorem 2.5 will be 
omplete if we 
an show that for somes > 0, kz 2 Hs(Dz) for almost all z 2 4. Fix z 2 4. We may assume z 2 �(X), forif z =2 �(X), then kz is holomorphi
 in a neighborhood of the 
losure of Dz, and there isnothing to prove. If p = (z; w), with w 2 Dz, then for any p0 = (z0; f(z0)),jw � f(z)j � jw � f(z0)j+ jf(z0)� f(z)j� jw � f(z0)j+M jz � z0j� pM2 + 1 jp� p0jby the Cau
hy-S
hwarz inequality, and sojw � f(z)j � pM2 + 1 dist(p;X)(11)By Lemma 2.4, then jk(p)j � Cdist4(p;X) � C 0jw � f(z)j4(12)for some 
onstant C 0. Write f(z) = q1� jzj2ei�. Then using (12), for r < 1 we obtainZ 2�0 jkz(rq1� jzj2ei�)j1=8 d� � C 0(1� jzj2)1=4 Z 2�0 1jrei� � ei�j1=2 d�= C 00 Z 2�0 1jrei� � 1j1=2 d�For j�j � �=3, 
os(�) � 1� �2=4, whi
h impliesj1� rei�j1=2 = [1 + r2 � 2r 
os(�)℄1=4 � [(1� r)2 + �2=4℄1=4 � p�=p2It follows from this that the last integral is bounded independently of r, and so k 2 H1=8(Dz)for all z 2 4. This 
ompletes the proof. 2Remark: The spe
ial 
ase of Theorem 2.5 when f is 
ontinuously di�erentiable on 4 
analso be obtained as a dire
t 
onsequen
e of Theorem 4.3 of ([2℄).We 
lose this se
tion by exhibiting a 
lass of sets with the hull-neighborhood property.Re
all that a real submanifold of Cn is said to be totally real if at ea
h point, its tangentspa
e 
ontains no 
omplex line.Theorem 2.7 Let f 2 C1(4), and assume �(f) is a totally real submanifold of C2. If Xis a 
ompa
t polynomially 
onvex subset of �(f), then X has property (H-N).8



Proof: For p 2 C2, let Æ(p) = dist(p;�(f)). Sin
e �(f) is totally real, a result of H�ormanderand Wermer ([12℄, or see [1℄, Lemma 17.2) implies that there is a neighborhood U of X inC2 su
h that Æ2 is stri
tly plurisubharmoni
 on U .Sin
e X is polynomially 
onvex, there exists a 
ompa
t polynomial polyhedron �, X �� � U , where � = fjPjj � 1; j = 1; : : : ; kg with ea
h Pj a polynomial. We may assume thatjPjj � 1=2 on X, for ea
h j. De�ne a fun
tion 	 on C2 by	 = maxfjP1j; : : : ; jPkjg � 34Then 	 = 1=4 on �� and 	 < 0 on X.Choose �0 > 0 so small that 	 < 0 on X�0. We will show that whenever p 2 C2 satis�es�(p) 2 �(X) and dist(p;X) > pM2 + 1 � for some � < �0, where M is the Lips
hitz 
onstantfor f , then there is a polynomial Q with Q(p) = 0 whose zero set does not meet X�. By theremarks following the de�nition of (H-N), this will 
omplete the proof.Choose a 
onstant � > 0 so that �Æ2(p) < 1=4 for all p 2 ��. Then on a neighborhoodN of �� we have �Æ2 < 	. De�ne F as follows:F = 8><>: max(	; �Æ2) on � [N	 on C2 n �Then F is well-de�ned and plurisubharmoni
 on C2. For � < �0 set�� = fq 2 C2 : F (q) � ��2gThen �� is 
ompa
t, and X� � ��, for if dist(q;X) < �, then 	(q) < 0, soF (q) = �Æ2(q) � � dist2(q;X) < ��2implying q 2 ��. Also, sin
e F is plurisubharmoni
, �� is polynomially 
onvex (this followsfrom [11℄, Theorem 4.3.4). Suppose p satis�es dist(p;X) > pM2 + 1 �. We distinguish two
ases: either (1) F (p) = �Æ2(p), or (2) F (p) = 	(p). In the �rst 
ase, we �nd as in the proof ofTheorem 2.5 that if we write p in 
oordinates as p = (z; w) then jw�f(z)j � pM2 + 1 jp�p0jwhenever p0 2 �(f), implying dist(p;X) � pM2 + 1 Æ(p), and soF (p) � � dist2(p;X)M2 + 1 > ��29



and thus p =2 ��. By the polynomial 
onvexity of ��, there exists a polynomial Q, nonvan-ishing on �� with Q(p) = 0; sin
e X� � ��, Q does not vanish on X�. In the se
ond 
ase, wemust have 	(p) > 0, and so jPj(p)j > 3=4 for some j. Set Q = Pj � Pj(p). Then Q(p) = 0,but sin
e 	 < 0 on X�, jPjj < 3=4 on X�, so Q 
annot vanish on X�. In both 
ases, we havefound the required polynomial Q, and the proof is 
omplete. 2Finally we note that the approa
h in this se
tion is related to the problem of determiningwhen X is a removable singularity for integrable CR fun
tions. In this 
ontext, we may saythat X is removable for L1 CR fun
tions if X has the property that whenever g 2 L1(d�)and ��bg = 0 o� X, then g extends to a fun
tion in H1(B) (see [3℄). By (3), ��bK� = 0 o�X whenever � 2 R(X)?, and hen
e by the remarks following Lemma 2.2, R(X) = C(X)for any subset of �B with �(X) = 0 that is removable for L1 CR fun
tions. The paper [16℄
ontains an extensive bibliography on this question and a survey of re
ent results.3. The algebra generated by R(E) and a smooth fun
tionIn this se
tion we study the algebra generated by R(E) and a smooth fun
tion on a planarset E. We then apply our results to the question of rational approximation on 
ertain subsetsof �B.If A is a uniform algebra on a 
ompa
t spa
e X, we write M(A) for its maximal idealspa
e, and view elements of M(A) as homomorphisms m : A ! C. We will identify ea
hpoint x 2 X with the point evaluation mx 2 M(A) de�ned by mx(h) = h(x). WhenA = R(X) for some 
ompa
t subset X � Cn, then M(A) 
an be identi�ed with 
Xr viam 2 M(A) ! (m(z1); : : : ; m(zn)) where (z1; : : : ; zn) are the 
oordinate fun
tions. This
orresponden
e is a homeomorphism.If F is a family of 
ontinuous fun
tions on a 
ompa
t spa
e X, then [F ℄ will denote thealgebra generated by F , i.e., the smallest 
losed subalgebra of C(X) 
ontaining F . In [20℄,J. Wermer studied the algebra A = [z; f ℄ on 4 generated by the identity fun
tion z and asmooth fun
tion f . Under the assumption that M(A) = 4, he showed that A 
onsists ofthose 
ontinuous fun
tions on 4 whose restri
tions to the zero set E of �f=��z lie in R(E).We will make use of the following generalization of Wermer's result due to Anderson and10



Izzo ([2℄, Theorem 4.2):Lemma 3.1 Let G be a 
olle
tion of 
ontinuously di�erentiable fun
tions on 4, and setA = [G℄. Assume the fun
tion z lies in A, and that M(A) = 4. Set T = f� 2 4 : �g��z (�) =0; 8g 2 Gg. Then A = fg 2 C(4) : gjT 2 R(T )g.In order to pass from algebras on 
ompa
t subsets of the disk to algebras on the disk, wewill need two results on extension algebras. The �rst is due to Bear [6℄ :Lemma 3.2 Let A0 be a uniform algebra on a 
ompa
t subset X0 of a 
ompa
t spa
e X.Put A = fh 2 C(X) : hjX0 2 A0g. If M(A0) = X0, then M(A) = X.Lemma 3.3 Let A; A0; X; and X0 be as in Lemma 3.2. Assume G0 is a subset of C(X0)with [G0℄ = A0. Let G � C(X) and assume (1) [G℄ 
ontains all 
ontinuous fun
tions on Xvanishing in a neighborhood of X0, and (2) GjX0 = G0. Then [G℄ = A.Proof: Clearly G � A, and so it suÆ
es to show, given h 2 A, that R h d� = 0 for allmeasures � 2 [G℄?. For any su
h measure the hypothesis that [G℄ 
ontains all 
ontinuousfun
tions vanishing near X0 implies supp(�) � X0. Sin
e hjX0 2 A0, we may 
hoose asequen
e hj of polynomials in elements of G0 
onverging to h on X0. By hypothesis (2), wemay assume ea
h hj is the restri
tion to X0 of an element of [G℄. ThenZX h d� = ZX0 h d� = limj!1 ZX0 hj d� = 0sin
e � 2 [G℄?. 2Given a 
ompa
t E � C, we write f 2 C1(E) if f is the restri
tion to E of a fun
tion
ontinuously di�erentiable in some neighborhood of E.Theorem 3.4 Let E be a 
ompa
t subset of C, and take f 2 C1(E). AssumeM([R(E); f ℄) =E. If [R(E); f ℄ 6= C(E), then there exists a 
ompa
t subset E0 of E su
h that R(E0) 6= C(E0)and f jE0 2 R(E0).Proof: Let E and f satisfy the hypotheses of the theorem. Without loss of generality, E isa 
ompa
t subset of the open unit disk. Set A = fh 2 C(4) : hjE 2 [R(E); f ℄g. Sin
eM([R(E); f ℄) = E by hypothesis, Lemma 3.2 implies that M(A) = 4. Fix any smoothextension of f to 4 (we denote the extension by f , also). Sin
e R(E) is generated by the11



set of fun
tions holomorphi
 in a neighborhood of E, Lemma 3.3 implies that A is generatedby the set G 
onsisting of f together with all fun
tions smooth on 4 and holomorphi
 ina neighborhood of E. Set E0 = f� 2 4 : �g=��z(�) = 0; 8g 2 Gg. Clearly E0 � E.By Lemma 3.1, A = fh 2 C(X) : hjE0 2 R(E0)g. Sin
e f 2 A, f jE0 2 R(E0). IfR(E0) = C(E0), then A = C(X) and hen
e [R(E); f ℄ = C(E), 
ontrary to hypothesis. 2As mentioned in the introdu
tion, Basener gave examples of rationally 
onvex subsetsX of �B with R(X) 6= C(X). To explain Basener's 
onstru
tion, we re
all the notion of aJensen measure. Given a uniform algebra A on X, a probability measure � on X is said tobe a Jensen measure for m 2 M(A) if for every h 2 A,log jm(h)j � ZX log jhj d�:If m is point evaluation at some p0 2 X, the point mass Æp0 at p0 is trivially a Jensen measurefor m. Every Jensen measure � for m represents m: m(h) = R h d� for all h 2 A. Basener'sassumption for X � �B was the following 
ondition on E = �(X):(B) For all z0 2 E the only Jensen measure for z0 relative to R(E) is Æz0 .It 
an be shown (see [7℄, Theorem 3.4.11) that (B) is equivalent to the 
ondition that theset of fun
tions harmoni
 in a neighborhood of E is dense in C(E). Examples of sets E � Csatisfying (B) for whi
h R(E) 6= C(E) 
an be found in [7℄, p. 193 �. and [18℄, x27.Basener showed that if X � �B has the form X = f(z; w) 2 �B : z 2 Eg where Eis a 
ompa
t subset of the open unit disk satisfying (B), then X is rationally 
onvex; infa
t, his proof shows (see also [18℄, x19.8) that the same is true for any X � �B for whi
h�(X) = E � int(4) satis�es (B). Our next lemma has a similar 
avor:Lemma 3.5 Let E be a 
ompa
t subset of C satisfying (B), and let f 2 C(E). ThenM([R(E); f ℄) = E.This 
an be proved by an argument essentially the same as that of Basener mentioned above,but a simpler approa
h is to note that it is an immediate 
onsequen
e of the following easylemma (whi
h strengthens Lemma 2.2 of [13℄).12



Lemma 3.6 Suppose A and B are uniform algebras on a 
ompa
t spa
e X and A � B.If x 2 X is su
h that the only Jensen measure for x relative to A is Æx, and m 2 M(B)
oin
ides with point evaluation at x when restri
ted to A, then m is point evaluation at x onall of B.Proof: Let � be a Jensen measure for m (as a fun
tional on B). Then obviously � is aJensen measure for the restri
tion of m to A, i.e., for point evaluation at x on A. Hen
e byhypothesis � = Æx. Sin
e � represents m, we 
on
lude that m is point evaluation at x on allof B. 2If A is a uniform algebra on X, a point p 2 X is a peak point for A if there exists afun
tion f 2 A with f(p) = 1 while jf j < 1 on X n fpg. When X is a 
ompa
t planar set,Bishop proved that R(X) = C(X) if almost every point of X is a peak point for R(X).Theorem 3.7 Let E be a 
ompa
t subset of C satisfying (B), and let f 2 C1(E). If almostevery point of E is a peak point for [R(E); f ℄, then [R(E); f ℄ = C(E).Proof: Suppose that [R(E); f ℄ 6= C(E). By Lemma 3.5, M([R(E); f ℄) = E. We maythen apply Theorem 3.4 to produ
e a 
ompa
t subset E0 of E with f jE0 2 R(E0) andR(E0) 6= C(E0). If z 2 E0 is a peak point for [R(E); f ℄, 
hoose g 2 [R(E); f ℄ peaking at z.Sin
e gjE0 2 R(E0), the point z is a peak point for R(E0). By Bishop's peak-point theorem,R(E0) = C(E0), whi
h is a 
ontradi
tion. 2Corollary 3.8 Let E be a 
ompa
t subset of the open unit disk satisfying (B), let f 2 C1(E),and set X = f(z; f(z)) : z 2 Eg. If X � �B, then R(X) = C(X).Proof: Let A be the algebra on X generated by r(z) and w, where (z; w) are 
oordinates inC2 and r ranges over R(E). Sin
e A � R(X), it suÆ
es to show that A = C(X). Moreover,A is isometri
ally isomorphi
 to the algebra on E generated by R(E) and f , and thereforeit is enough to show [R(E); f ℄ = C(E). Ea
h point of �B is a peak point for polynomials,hen
e is a peak point for A, and so every point of E is a peak point for [R(E); f ℄. ByTheorem 3.7, [R(E); f ℄ = C(E). 2It is reasonable to 
onje
ture that Theorems 3.4 and 3.7 remain valid if the hypothesisthat f 2 C1(E) is repla
ed by the assumption that f is merely 
ontinuous on E. We have13



no proof or 
ounterexample.Finally, we remark that Theorem 3.7 
an also be obtained in a di�erent fashion by
ombining our Lemma 3.5 with Theorem 4.3 of [2℄.4. Approximation on H�older graphsIn this se
tion we show that the hypothesis f 2 Lip(4) of Theorem 2.5 may be weakenedto the assumption that f satis�es a H�older 
ondition with exponent �, 0 < � < 1, onE = �(X). That is, we assume there exists M so that for all z; z0 2 E,jf(z)� f(z0)j �M jz � z0j�(13)To establish Theorem 2.5 under the hypothesis that f satis�es (13), it suÆ
es to show (
f.(11) in the proof of Theorem 2.5) that there exists a 
onstant C so that for z 2 E, w 2 Dz,jw � f(z)j � C dist((z; w); X)�(14)From (14) it follows, as in the proof of Theorem 2.5, that if p = (z; w), we have the estimatejk(p)j � C 0jw � f(z)j4=�from whi
h we infer k 2 H�=8(Dz) for all z 2 4, 
ompleting the proof.To establish (14), we �x p = (z; w), and take p0 = (z0; f(z0)) 2 X so that dist(p;X) =jp� p0j. Then jw � f(z)j � jw � f(z0)j+ jf(z0)� f(z)j� jw � f(z0)j+M jz � z0j�� (M2 + 1)1=2(jw � f(z0)j2 + jz � z0j2�)1=2and so jw � f(z)j2=�dist2(p;X) � (M2 + 1)1=�(jw � f(z0)j2 + jz � z0j2�)1=�jw � f(z0)j2 + jz � z0j2(15)Set x = jw� f(z0)j, y = jz � z0j. Note dist2(p;X) = x2 + y2 � 4, sin
e p; p0 are points inthe 
losed unit ball. The quantityG(x; y) = (x2 + y2�)1=�x2 + y214



on the right of (15) is 
learly bounded on 1 � x2+y2 � 4, so to 
omplete the proof of (14), itsuÆ
es to show that G(x; y) is bounded for x2+ y2 < 1. Applying the elementary inequality(A+B)p � 2p(Ap +Bp) for positive A;B; p, we obtain(x2 + y2�)1=� � 21=�(x2=� + y2) � 21=�(x2 + y2)using, in the last inequality, the fa
t that x < 1. Therefore, G(x; y) � 21=� for x2 + y2 < 1,and the proof is �nished.Referen
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