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Abstract: It was once conjectured that if A is a uniform algebra on
its maximal ideal space X, and if each point of X is a peak point for
A, then A = C(X). This peak point conjecture was disproved by Brian
Cole in 1968. However, Anderson and Izzo showed that the peak point
conjecture does hold for uniform algebras generated by smooth functions
on smooth two-manifolds with boundary. The corresponding assertion
for smooth three-manifolds is false, but Anderson, Izzo, and Wermer
established a peak point theorem for polynomial approximation on real-
analytic three-manifolds with boundary. Here we establish a more gen-
eral peak point theorem for real-analytic three-manifolds with boundary
analogous to the two-dimensional result. We also show that if A is a
counterexample to the peak point conjecture generated by smooth func-
tions on a manifold of arbitrary dimension, then the essential set for A
has empty interior.

1. Introduction

Let A be a uniform algebra on a compact metric space X. That is, A is a subalgebra

of C(X) (the algebra of all complex-valued continuous functions on X) that is closed in the

supremum norm, contains the constants, and separates the points of X. A central problem

in the subject of uniform algebras is to characterize C(X) among the uniform algebras on

X. One necessary condition for A to be C(X) is that the maximal ideal space of A be X,

that is, the only nonzero multiplicative linear functionals on A be the point evaluations.

Another necessary condition is that every point of X be a peak point for A. (A point p ∈ X

is a peak point for A if there exists a function f ∈ A with f(p) = 1 while |f | < 1 on X\{p}.)

It was once conjectured that together these two necessary conditions for A = C(X) were

also sufficient. However, a counterexample to this “peak point conjecture” was produced

by Brian Cole in his 1968 thesis (see [4, Appendix] or [12, Section 19]). Subsequently
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other counterexamples were given; the one that is probably the simplest is due to Richard

Basener [3].

In 2001 Anderson and Izzo [1] established a peak point theorem for uniform algebras

on two-dimensional manifolds: if A is a uniform algebra generated by C1 functions on a

compact C1 two-dimensional manifold with boundary M such that the maximal ideal space

of A is M and each point of M is a peak point for A, then A = C(M). The corresponding

assertion for three-dimensional manifolds is false: there is a counterexample to the peak

point conjecture due to Izzo [8] generated by C∞ functions on a smooth solid torus,

and a counterexample generated by C∞ functions on the 3-sphere can easily be obtained

from Basener’s example (see [1]). Nevertheless Anderson, Izzo, and Wermer [2] proved

a peak point theorem for polynomial approximation on real-analytic three-dimensional

submanifolds of Cn. In the present paper we generalize this result to general uniform

algebras generated by real-analytic functions on real-analytic three-dimensional manifolds.

The precise result is as follows.

Theorem 1.1: Let Σ be a real-analytic three-dimensional manifold with boundary, and

let X be a compact subset of Σ such that ∂X (the boundary of X relative to Σ) is a two-

dimensional submanifold of Σ of class C1. Let A be a uniform algebra on X generated by

a collection Φ of functions that are real-analytic on a neighborhood of X. If the maximal

ideal space of A is X and every point of X is a peak point for A, then A = C(X).

Perhaps the notion of the boundary ∂X of X relative to Σ should be made more

explicit; ∂X denotes the union of the topological boundary of X relative to Σ and the set

X ∩ ∂Σ.

We will also prove a peak point theorem of a different flavor from all of the results

discussed above by showing that a uniform algebra generated by C1 functions on a manifold

M and satisfying the hypotheses of the peak point conjecture must in a certain sense be

almost C(M). The essential set E for a uniform algebra A on a space X is the smallest
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closed subset of X such that A contains every continuous function on X that vanishes

on E. Note that A contains every continuous function whose restriction to E lies in the

restriction A|E of A to E. The uniform algebra A is said to be essential if E = X.

Theorem 1.2: Let A be a uniform algebra on a compact C1 manifold with boundary

M . Assume that A is generated by C1 functions, that the maximal ideal space of A is

M , and that every point of M is a peak point for A. Then the uniform algebra A is not

essential. In fact, the essential set for A has empty interior in M .

This result is particularly interesting because it requires only C1 smoothness and

applies in all dimensions. It shows that for uniform algebras generated by C1 functions

on a manifold with boundary, the hypotheses of the peak point conjecture imply that the

functions in the algebra are arbitrary except on a small set. The result has already been

used by Izzo [9] to answer a question about uniform algebras on spheres raised by Ronald

Douglas in connection with a conjecture of William Arveson.

The proof of Theorem 1.1 parallels closely the proof of the special case in [2]. That

proof relied on a theorem of Hörmander and Wermer [7] (which under a weaker smoothness

hypothesis is due to O’Farrell, Preskenis, and Walsh [11]) regarding approximation and

complex tangents. In the proof of Theorem 1.1, that result will be replaced by a recent

generalization due to Izzo [10, Theorem 1.3]. This result will also be needed for the proof

of Theorem 1.2. The needed result is the following.

Theorem 1.3: Let A be a uniform algebra on a compact Hausdorff space X. Suppose

that the maximal ideal space of A is X. Suppose also that E is a closed subset of X such

that X \ E is an m-dimensional manifold and such that

(i) for each point p ∈ X \E there are functions f1, . . . , fn ∈ A that are C1 on X \E and

satisfy df1 ∧ . . . ∧ dfn(p) 6= 0, and

(ii) the functions in A that are C1 on X \ E separate points on X.
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Then A = {g ∈ C(X) : g|E ∈ A|E}. (Hence A|E denotes the collection of functions

obtained by restricting the functions in A to E.)

As in the proof in [2], in the proof of Theorem 1.1 we will need to consider varieties.

Now, however, our varieties will be subvarieties of the abstract manifold Σ rather than

varieties in Cn. A relatively closed subset V of an open set O ⊂ Σ is said to be a real-

analytic subvariety of O if for each p ∈ V there exists a neighborhood O′ ⊂ O of p ∈ Σ

and real-valued functions g1, . . . , gm that are real-analytic on O′ such that

V ∩O′ = {q ∈ O′ : g1(q) = . . . = gm(q) = 0}.

A point p is a regular point of V if there exists a neighborhood U of p in Σ such that V ∩U

is a real-analytic submanifold of U . The set of regular points will be denoted by Vreg. The

dimension of V as a manifold in a neighborhood of a regular point is constant on connected

components of Vreg. The set of singular points is defined to be Vsing ≡ V \ Vreg. As in [2],

we will use the following result concerning the Hausdorff measure of the singular set of a

variety in Cn (see [5, 3.4.10, p. 337]).

Lemma 1.4: Let V be an m-dimensional real-analytic subvariety of an open set O ⊂ Cn.

Then the (m−1)-dimensional Hausdorff measureHm−1(Vsing∩C) is finite for each compact

subset C of O.

2. Proofs of Theorems 1.1 and 1.2

We begin with some lemmas whose proofs we defer. (For the notion of Hausdorff

measure in a metric space see [5].)

Lemma 2.1: Let K be a compact metric space and A be a uniform algebra on K with

maximal ideal space K. Suppose K = X ∪ Y where X is a compact set such that A|X =

C(X) and Y has two-dimensional Hausdorff measure zero. Suppose also that A is generated

by Lipschitz functions. Then A = C(K).
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Lemma 2.2: Let M be an m-dimensional manifold with boundary of class C1. Suppose

K is a compact subset of M and A is a uniform algebra on K generated by a collection Φ

of functions that are C1 on a neighborhood of K. Assume that the maximal ideal space

of A is K and that every point of K is a peak point for A. Then the set E = {p ∈ K :

df1 ∧ . . . ∧ dfm(p) = 0 for all f1, . . . , fm ∈ Φ} has empty interior in M .

Lemma 2.3: Let A be a uniform algebra on a compact space K such that the maximal

ideal space of A is K, and every point of K is a peak point for A. If Y is a closed subset

of K, then the maximal ideal space of A|Y is Y and every point of Y is a peak point for

A|Y .

Proof of Lemma 2.3: That every point of Y is a peak point for A|Y is obvious. Furthermore

the maximal ideal space of A|Y is easily seen to consist of those points p of K such that

|f(p)| ≤ ||f ||Y for every f ∈ A (see [6, II.6]), and the peak point hypothesis clearly implies

that the points of Y are the only ones satisfying this condition.

The proofs of Lemmas 2.1 and 2.2 are given in the next section. Here we use the

lemmas to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.2: This is immediate from Lemmas 2.2 and Theorem 1.3.

Proof of Theorem 1.1: Let E = {p ∈ X : df1 ∧ df2 ∧ df3(p) = 0 for all f1, f2, f3 ∈ Φ}.

Let X0 denote the interior of X relative to Σ. (Points of X ∩ ∂Σ are excluded from the

interior of X.) Let Ẽ = E ∩X0, and K0 = Ẽ ∪ ∂X (= E ∪ ∂X). Note that K0 is compact.

Theorem 1.3 shows that K0 contains the essential set for A. Hence to show A = C(X) it

suffices to show that A|K0 = C(K0). Moreover, the restriction of a uniform algebra to a

set that contains the essential set is always closed (see [4]), so it is enough to show that

A|K0 is dense in C(K0).

It is easily seen that Ẽ is a real-analytic subvariety of X0. Lemma 2.2 implies that Ẽ
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has no interior in Σ, and hence the dimension of Ẽ is at most two. Let Ẽc = {p ∈ Ẽreg :

df1 ∧ df2(p) = 0 (as a form on Ẽreg) for all f1, f2 ∈ Φ}. Set Z = Ẽsing ∪ Ẽc ∪ ∂X. It is

easily seen that Z is a compact subset of K0 such that K0 \Z is a two-manifold (a subset

of Ẽreg) and for every point p of K0 \ Z there exist functions f1 and f2 in Φ such that

df1 ∧ df2(p) 6= 0. Thus, by Theorem 1.3, in order to show that A|K0 = C(K0), it suffices

to show that A|Z = C(Z). (To apply Theorem 1.3 we need to note that the maximal

ideal space of A|K0 is K0 by Lemma 2.3.) We will show that A|Z = C(Z) by applying

Lemma 2.1, taking for X in the lemma the set ∂X and for Y the set Ẽsing ∪ Ẽc.

Application of Lemma 2.3 shows that the maximal ideal space of A|∂X is ∂X and

every point of ∂X is a peak point for A|∂X. Since ∂X is a two-manifold, the peak point

theorem for two-manifolds applies to show that A|∂X = C(∂X).

We want now to assert that the set Ẽsing∪ Ẽc has two-dimensional Hausdorff measure

zero. In order for this to have any meaning, we must first introduce a metric. We give

our manifold Σ a metric such that every coordinate system on Σ is a lipeomorphism (i.e.,

bi-Lipschitz) on compact sets. (One way to do this is to imbed Σ in a Euclidean space Rn,

by the Whitney imbedding theorem, and then give Σ the metric it inherits as a subspace

of Rn.) Then every real-analytic function on an open subset of Σ (and in particular every

element of Φ) is Lipschitz on compact subsets. Furthermore a compact subset K of Σ has

n-dimensional Hausdorff measure zero if and only if for each coordinate chart (φ,U) the

set φ(K ∩ U) has n-dimensional Hausdorff measure zero.

Now to show that H2(Ẽsing) = 0, first note that for each coordinate chart (φ,U), the

set φ(Ẽ∩U) is a real-analytic subvariety of φ(U) with singular set φ(Ẽsing∩U). So for each

compact set C ⊂ φ(U), we have H1(C ∩φ(Ẽsing ∩U)) < ∞ by Lemma 1.4. Exhausting U

by a countable family of compact sets gives H2(φ(Ẽsing ∩ U)) = 0. Hence H2(Ẽsing) = 0.

Next, let K be an arbitrary compact subset of Ẽreg. By Lemma 2.3, the maximal ideal

space of A|K is K and every point of K is a peak point for A|K. Lemma 2.2 now shows

that Ẽc∩K has no interior relative to Ẽreg, from which it follows that Ẽc is a real-analytic
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subvariety of Ẽreg of dimension at most one. Thus H2(Ẽc) = 0. Applying Lemma 2.1 now

yields that A|Z = C(Z), thus completing the proof.

3. Proofs of Lemmas 2.1 and 2.2

It remains to prove Lemmas 2.1 and 2.2. The proof of Lemma 2.1 uses a simple lemma

concerning A-convexity. For A a uniform algebra on a compact space K and X a subset

of K, the A-convex hull of X is the set of points z in the maximal ideal space of A such

that |f(z)| ≤ supx∈X |f(x)| for all f ∈ A. (Here we identify f with its Gelfand transform.)

The A-convex hull of X is also the maximal ideal space of A|X [6, II.6.1]. The set X is

A-convex if it is its own A-convex hull.

Lemma 3.1: If A is a uniform algebra on K and X is an A-convex subset of K, then

X ∪ {z0} is also A-convex for each point z0 ∈ K.

Proof: Assume z0 6∈ X, since otherwise there is nothing to prove. Given z 6∈ X ∪ {z0},

there is a function p ∈ A such that |p(z)| > supx∈X |p(x)| (by the A-convexity of X). By

multiplying p by a constant, we can assume that p(z) = 1 and supx∈X |p(x)| < 1. Choose

a function q ∈ A such that q(z0) = 0 and q(z) = 1. Let M = supx∈X |q(x)| and choose

n ∈ Z+ large enough that supx∈X |pn(x)| < 1/2M . Then

q(z)pn(z) = 1, q(z0)pn(z0) = 0

and supx∈X |q(x)pn(x)| < 1/2. Thus z is not in the A-convex hull of X ∪{z0}, so X ∪{z0}

is A-convex.

Proof of Lemma 2.1: Suppose we can show that for every z ∈ Y \X and every z′ ∈ K with

z′ 6= z, there is a real-valued function f ∈ A such that f(z′) 6= f(z). Then every set of

antisymmetry for A either consists of a single point or else is contained in X. If g ∈ C(K)

and E is a set of antisymmetry for A contained in X, then since A|X = C(X), we have

that g|E ∈ A|E. But the restriction of a uniform algebra to a maximal set of antisymmetry
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is closed, so g|E ∈ A|E. The Bishop antisymmetric decomposition [6, II.13.1] then gives

that g ∈ A. Thus it is sufficient for us to show that given z ∈ Y \ X and z′ ∈ K with

z′ 6= z, there is a real-valued function f ∈ A such that f(z′) 6= f(z).

Since A|X = C(X), we know that X is A-convex, so by Lemma 3.1, so is X ∪ {z′}.

Consequently there is a function p in A with |p| ≤ 1
2 on X ∪ {z′} and p(z) = 1. Since by

hypothesis A is generated by Lipschitz functions, p can be taken to be Lipschitz. Then

p(Y ) has two-dimensional Hausdorff measure zero. Hence p(Y ) has area measure zero

(two-dimensional Hausdorff and Lebesgue measure agree for sets in R2, see [5, p. 197]).

Hence the Hartogs-Rosenthal theorem [6, II.8.4] shows that R(L) = C(L) for each compact

set L ⊂ p(Y ). (Here R(L) denotes the algebra of continuous functions on L that can be

approximated uniformly by rational functions with poles off L.) Consequently, if h is a

real-valued continuous function on p(K) with h = 0 on p(K)∩{ζ : |ζ| ≤ 7
8}, and h(1) = 1,

then h belongs to R
(
p(K)

)
locally. (Obviously h belongs to R

(
p(K) ∩ {ζ : |ζ| ≤ 7

8}
)
, and

h belongs to R
(
p(K)∩ {ζ : |ζ| ≥ 3

4}
)

as p(K)∩ {ζ : |ζ| ≥ 3
4} is a compact subset of p(Y ).)

Since R(E) is local for E ⊂ C [6, II.10.3], we have h ∈ R
(
p(K)

)
. Since p is in A and K

is the maximal ideal space of A, it follows (by the functional calculus) that h ◦ p is in A.

Now noting that h ◦ p is real-valued and separates z from z′ completes the proof.

Proof of Lemma 2.2: We need to show that given any open set U of M contained in K,

there are functions f1, . . . , fm in Φ such that df1 ∧ . . . ∧ dfm is not identically zero on U .

We will choose these functions inductively so that for each k, 1 ≤ k ≤ m, the k-form

df1 ∧ . . . ∧ dfk is not identically zero on U .

When k = 1 the required function can clearly be chosen, since the functions in Φ

separate points on M . Now assume that functions f1, . . . , fk ∈ Φ have been found so

that df1 ∧ . . . ∧ dfk does not vanish identically on U . Fix a point p0 in U such that

df1∧ . . .∧dfk(p0) 6= 0, and choose k vectors ξ1, . . . , ξk in the tangent space to M at p0 such

that
(
df1 ∧ . . .∧ dfk(p0)

)
(ξ1, . . . , ξk) 6= 0. We may then choose a set N ⊂ U , diffeomorphic

to a (k +1)-ball, with p0 ∈ ∂N , such that (ξ1, . . . , ξk) span the tangent space to ∂N at p0.

8



Then df1 ∧ . . . ∧ dfk does not vanish identically as a form on ∂N . By standard theorems

there is a smooth function g on ∂N such that

(∗)
∫

∂N

g df1 ∧ . . . ∧ dfk 6= 0.

Moreover, letting K0 = {p ∈ ∂N : df1 ∧ . . . ∧ dfk(p) = 0 as a form on ∂N}, we can take g

to be identically zero on K0. Since the maximal ideal space of A is K and every point of

K is a peak point for A, Lemma 2.3 gives that the maximal ideal space of A|∂N is ∂N

and every point of ∂N is a peak point for A|∂N . Thus we can apply Theorem 1.3 to A|∂N

(with K0 as the set E) to get that g is in A|∂N . Consequently g is a uniform limit on ∂N

of polynomials in the elements of Φ, and hence there is such a polynomial h so that (∗)

continues to hold with g replaced by h. By Stokes’ Theorem

(∗∗)
∫

N

dh ∧ df1 ∧ . . . ∧ dfk =
∫

∂N

h df1 ∧ . . . ∧ dfk 6= 0.

From the formula for the differential of a product, we see that dh is a linear combination

(with coefficients that are smooth functions) of the differentials of functions in Φ. Thus

(∗∗) implies the existence of a function fk+1 ∈ Φ such that df1∧. . .∧dfk+1 is not identically

zero on N ⊂ U . This completes the induction and the proof.
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