
THE HULL OF RUDIN’S KLEIN BOTTLE

JOHN T. ANDERSON

Abstract. In 1981 Walter Rudin exhibited a totally real embedding of the

Klein bottle into C2. We show that the polynomially convex hull of Rudin’s
Klein bottle contains an open subset of C2. We also describe another totally
real Klein bottle in C2 whose hull has topological dimension equal to three.

1. Introduction

A real submanifoldM of complex Euclidean space Cn is said to be totally real if, at
each point p ∈M , the tangent space Tp(M) to M (with the usual identifications of
Tp(M) with a subspace of R2n) contains no non-trivial complex subspace. Among
the real surfaces, only the torus and connected sums of an odd number of Klein
bottles admit totally real embeddings into C2 (see for example [5]). The first explicit
example of a totally real embedding of the Klein bottle in C2 was given by Walter
Rudin in [7]. Section 20 of [3] describes a family of immersions of the Klein bottle
into C2 that includes Rudin’s embedding.

For a compact subset Y of Cn, the polynomially convex hull of Y is defined by

Ŷ = {z ∈ Cn : |P (z)| ≤ ∥P∥Y for all holomorphic polynomials P}

where ∥P∥Y = max{|P (ζ)| : ζ ∈ Y }. The set Ŷ may be identified with the maximal
ideal space of the algebra P (Y ) of uniform limits of holomorphic polynomials on Y .

We say that Y is polynomially convex if Ŷ = Y . IfM is a compact real submanifold
of Cn of dimension n, then M is not polynomially convex (see [8], Corollary 2.3.5.)
For orientable M this follows from a result of A. Browder; for nonorientable M it
is due to T. Duchamp and E. L. Stout. In fact, a result of H. Alexander implies

that the topological dimension of M̂ \ M must be at least n + 1 ([8], Corollary
2.3.18). One would like to “explain” these topological results analytically, say by

constructing holomorphic maps of the open unit disk D into M̂ \M with ∂Dmapped

to M . By the maximum principle, the image of D under any such map lies in M̂ .
For a submanifoldM of Cn which is not totally real, a technique due to E. Bishop

and since refined by a number of authors allows, under certain nondegeneracy
conditions, construction of such analytic disks with boundaries in M near a point
of complex tangency. In case of totally real manifolds, of course, this approach is
not possible. Nevertheless, it is still often possible to find holomorphic mappings
of the disk into Cn with boundaries on M . In this paper we will use a theorem
of J. Wermer ([9]) to produce enough analytic disks with boundaries attached to
Rudin’s Klein bottle so that their interiors fill an open subset of C2. This method
was also used in [2] to determine the hull of a certain totally real embedding of the
three-sphere into C3 constructed by Ahern and Rudin.
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In section 2 we recall Rudin’s construction and introduce a covering of Rudin’s
Klein bottle K by a totally real torus. In section 3 we determine exactly the
polynomially convex hull of the covering torus, and conclude that the hull of K
contains an open subset of C2. In section 4 we modify Rudin’s example to produce
a totally real Klein bottle in C2 whose hull has topological dimension three (which,
by Alexander’s result, is as small as possible).

The general problem of attaching analytic disks (or more general holomorphic
sets) to totally real submanifolds of complex manifolds has been studied intensively.
The paper [4] gives some history of this problem and contains results on attaching
Riemann surfaces to totally real tori. The author is unaware of any general results
on producing analytic disks with boundaries in a Klein bottle.

2. Rudin’s Klein Bottle and a Covering

We first describe the construction given in [7].
Define F = (F1, F2) : R2 → C2 by

F (θ, ϕ) :=
(
e2iθk2(ϕ), eiθk(ϕ)h(ϕ)

)
where k, h are smooth, 2π-periodic functions on the real line with

(i) k real-valued, even, everywhere positive and strictly monotone on [−π, 0);
(ii) h complex-valued, odd and h(ϕ) ̸= 0 for ϕ ∈ (0, π);
(iii) h′ nonzero everywhere.

Let R = [0, π)× [−π, π). It is easy to check that under assumptions (i), (ii), (iii)
we have

(1) F (θ, ϕ+ 2π) = F (θ, ϕ) = F (θ + π,−ϕ);
(2) F is one-to-one on R;
(3) dF1 ∧ dF2 ̸= 0 on R.

Properties (1) - (3) imply that F (R) is a smooth, totally real submanifold of C2

homeomorphic to a Klein bottle. In Rudin’s construction,

(2.1) k(ϕ) := a+ b cos(ϕ) where a > b > 0, and h(ϕ) := sin(ϕ) + i sin(2ϕ).

Henceforth we assume that k, h are as in (2.1), and we set K = F (R).
For fixed ϕ, the map ζ ∈ D 7→ (ζ2k2(ϕ), ζk(ϕ)h(ϕ)) is clearly an analytic disk

with boundary in K, but as we shall see the union of this one-parameter family of

disks does not fill out K̂.
Next we consider the map F̃ = (F̃1, F̃2) : R2 7→ C2 defined by

(2.2) F̃ (θ, ϕ) = (eiθk(ϕ), h(ϕ)) := (z(θ, ϕ), w(θ, ϕ))

Let R̃ = [−π, π)× [−π, π) ⊂ C2. Then it easy to verify that

(1) F̃ (θ + 2π, ϕ) = F̃ (θ, ϕ) = F̃ (θ, ϕ+ 2π);

(2) F̃ is one-to-one on R̃;

(3) dF̃1 ∧ dF̃2 ̸= 0 on R̃.

Properties (1) - (3) imply that T := F̃ (R̃) is a smooth, totally real submanifold of
C2 homeomorphic to a torus. Set

Q(z, w) := (z2, zw)

It is not hard to check that Q(T ) = K, and that if q = F (θ, ϕ) ∈ K, Q−1({q})
consists of the two points F̃ (θ, ϕ), F̃ (θ + π,−ϕ). We will determine exactly the
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polynomially convex hull T̂ of T and show that it contains an open subset of C2.

Since Q is a polynomial map, Q(T̂ ) ⊂ K̂, and therefore (note Q has non-vanishing

Jacobian determinant for z ̸= 0), K̂ contains an open subset of C2. However,
polynomial maps do not necessarily preserve polynomially convex hulls: consider,
for example, the image under the map Q of Γ := {(eiθ, e−iθ) : θ ∈ [−π, π)}. The
circle Γ is polynomially convex, but Q(Γ) = {(e2iθ, 1) : θ ∈ [−π, π)} is not. We

have been unable to prove that Q(T̂ ) = K̂.

3. The hull of T

As is well known, in considering analytic disks with boundaries on a compact set
Y ⊂ Cn as a way of exhibiting points in the hull of Y , we need not insist that
the boundary of the image is attached smoothly to Y . Indeed, if Φ : D 7→ C
is holomorphic and bounded, and Φ∗(eiθ) := limr↑1 Φ(re

iθ) ∈ Y for almost all
θ ∈ [0, 2π), then the maximum principle for bounded holomorphic functions implies

that Φ(D) ⊂ Ŷ . We say that Φ (more precisely, its image) is an H∞-disk with
boundary in Y .

With h, k as in (2.1), set γ = {h(ϕ) : ϕ ∈ [−π, π)}. The figure-eight curve γ has
a double point at the origin (since h(0) = h(−π) = 0), while h maps [−π, 0)∪ (0, π)
one-to-one onto γ \ {0}. Let Ω be the region bounded by γ; Ω is symmetric with
respect to the origin. For ϕ ∈ [−π, π) we set

Γϕ = {(z, w) ∈ T : w = h(ϕ)} = {(eiθk(ϕ), h(ϕ)) : θ ∈ [−π, π)}

and let Dϕ be the (closed) H∞-disk with boundary Γϕ, i.e.,

Dϕ = {(z, h(ϕ)) : |z| ≤ k(ϕ)}.

If ϕ ̸= 0, Dϕ ∩T = Γϕ, while D0 ∩T = Γ0 ∪Γπ = {(z, 0) : |z| = a± b}. We consider
the Dirichlet problem:

(3.1) △u = 0 in Ω, u = log(k ◦ h−1) on γ \ {0}.

Note that k ◦h−1 is continuous, bounded and bounded away from zero on γ \ {0}.
There thus exists (see [6], Corollary 4.2.6 and its proof) a unique real-valued func-
tion u ∈ L∞(Ω), continuous on Ω\{0}, satisfying (3.1). The fact that h is odd and k
is even together with uniqueness of the solution to (3.1) implies that u(w) = u(−w)
for all w ∈ Ω.

Let v be a harmonic conjugate for u in Ω (we may construct v on the simply
connected region Ω+ = Ω ∩ {w ∈ C : Re(w) > 0}, and extend v to Ω \ Ω+ by
setting v(w) = v(−w); ). Define g = exp(u+ iv). Then g ∈ H∞(Ω), and g extends
continuously to γ \ {0} with

(3.2) |g(w0)| = k ◦ h−1(w0), w0 ∈ γ \ {0}.

We may now state the description of T̂ :

Theorem 3.1.

T̂ = {(z, w) : w ∈ Ω \ {0}, |z| ≤ |g(w)|} ∪D0,

and therefore T̂ contains an open subset of C2.

As remarked at the end of the previous section, Theorem 3.1 immediately gives

the following information about K̂:
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Corollary 1. With Q(z, w) = (z2, zw), Q(T̂ ) ⊂ K̂, and therefore K̂ contains an
open subset of C2.

The proof of Theorem 3.1 will be divided into three lemmas. Note that since

Ω is polynomially convex, (z, w) ∈ T̂ implies w ∈ Ω. We begin by describing the
points in the hull for which w ∈ γ.

Lemma 3.2.

(3.3) {(z, w) ∈ T̂ : w ∈ γ} =
∪

ϕ∈(−π,π)

Dϕ

Proof. Each Dϕ is contained in T̂ , so the set on the right-hand side of (3.3) is
contained in the set on the left-hand side. The proof of the opposite inclusion is
essentially the same as that given in [1] for the first claim in the proof of Theorem 1
of that paper. For convenience we reproduce the argument. Suppose p = (z0, w0) ∈
T̂ and w0 = h(ϕ). If p /∈ Dϕ, then |z0| > k(ϕ). Every point of γ is a peak point

for the algebra P (Ω), so we can choose f ∈ P (Ω) with f(w0) = 1 and |f | < 1 on
γ \ {w0}. For each integer n ≥ 0, the function (z, w) 7→ zfn(w) belongs to P (T ).
If µ is a representing measure for p for the algebra P (T ) with support in T (see for
example [8], p. 10), then

(3.4)

∣∣∣∣∫
T

zfn(w) dµ(z, w)

∣∣∣∣ = |z0fn(w0)| = |z0|.

But taking the limit as n→ ∞ in (3.4) gives∣∣∣∣∣
∫
Γϕ

z dµ(z, w)

∣∣∣∣∣ = |z0| > k(ϕ),

contradicting the fact that |z| = k(ϕ) on Γϕ. �

Since |g(h(ϕ))| = k(ϕ) for ϕ /∈ {−π, 0}, and |z| ≤ k(ϕ) if (z, w) ∈ Dϕ, we can
express the result of Lemma 3.2 as follows:

(3.5) {(z, w) ∈ T̂ : w ∈ γ} = {(z, w) : w ∈ γ \ {0}, |z| ≤ |g(w)|} ∪D0.

Next we show:

Lemma 3.3.

(3.6) {(z, w) : w ∈ Ω, |z| ≤ |g(w)|} ⊂ T̂

Proof. It suffices to show that

(3.7) w ∈ Ω, |z| = |g(w)| ⇒ (z, w) ∈ T̂ ,

for then the map ζ ∈ D 7→ (ζ|g(w)|, w) is (for each fixed w ∈ Ω) an H∞-disk with

boundary in T̂ , hence (ζ|g(w)|, w) ⊂ T̂ for all ζ ∈ D, establishing (3.6). Moreover,

T is invariant under (z, w) → (z,−w), so the same is true of T̂ . Since log |g| = u
is even, it therefore suffices to prove (3.7) for w ∈ Ω+. Let ψ be a conformal map

of the unit disk onto Ω+. Then ψ extends to a homeomorphism of D with Ω+. We
may assume that ψ(1) = 0. Then for λ0 ∈ ∂D \ {1},

lim
λ∈D→λ0

|g ◦ ψ(λ)| = k ◦ h−1 ◦ ψ(λ0) = k(ϕ)
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where ϕ = h−1 ◦ ψ(λ0). Therefore, for any τ ∈ [−π, π),

lim
λ∈D→λ0

(eiτg ◦ ψ(λ), ψ(λ)) = (eiτeiσk(ϕ), h(ϕ)) = F̃ (τ + σ, ϕ)

for some σ ∈ [−π, π), hence limλ∈D→λ0(e
iτg ◦ ψ(λ), ψ(λ)) ∈ T , i.e., the map λ ∈

D 7→ (eiτg ◦ ψ(λ), ψ(λ)) is an H∞ – disk with boundary in T . Therefore,

(eiτg ◦ ψ(λ), ψ(λ)) ∈ T̂ for all λ ∈ D, implying (eiτg(w), w) ∈ T̂ for all w ∈ Ω+.
This establishes (3.7) and completes the proof. �

Finally, we have

Lemma 3.4.

{(z, w) ∈ T̂ : w ∈ Ω} ⊂ {(z, w) : w ∈ Ω, |z| ≤ |g(w)|}.

Proof. We make use of a theorem of John Wermer ([9]): let A be a uniform algebra
on a compact Hausdorff space X, and let MA denote the maximal ideal space of

A. Fix functions π, f ∈ A, and let π̂, f̂ denote the Gelfand transforms of π, f
respectively. Set

ψ(ζ) = log(max{|f̂(p)| : p ∈ MA and π̂(p) = ζ}.
Then ψ is subharmonic on any open subset U of C \ π(X) such that π̂−1(U) is

non-empty. Taking X = T , A = P (T ) (so MA = T̂ ), f(z, w) = z and π(z, w) = w,
Wermer’s Theorem implies that

ψ(w) = log(max{|z| : (z, w) ∈ T̂})
is subharmonic on Ω. We claim that if w0 ∈ γ \ {0},
(3.8) lim sup

w∈Ω→w0

ψ(w)− log |g(w)| ≤ 0.

If (3.8) fails, then (using the fact that |g| is continuous on Ω\{0}) there exists ϵ > 0
and a sequence wn ∈ Ω converging to w0 with ψ(wn) > log |g(w0)| + ϵ for all n.

Choose zn so that (zn, wn) ∈ T̂ and log |zn| = ψ(wn). By passing to a subsequence,

we may assume that (zn, wn) converges to (z0, w0) ∈ T̂ , for some z0. By (3.5),
log |z0| ≤ log |g(w0)|, and so

(3.9) log |zn| = ψ(wn) > log |g(w0)|+ ϵ ≥ log |z0|+ ϵ

for all n. But log |zn| converges to log |z0|, contradicting (3.9) and proving (3.8).
Since g is nonvanishing in Ω, log |g| is harmonic and ψ− log |g| is subharmonic on Ω.
By the maximum principle for bounded subharmonic functions (see [6], Theorem
3.6.9), (3.8) implies that ψ(w) − log |g(w)| ≤ 0 for all w ∈ Ω. Since we also have

by Lemma 3.3 ψ(w) ≥ log |g(w)|, ψ = log |g| on Ω. Therefore, if (z, w) ∈ T̂ and
w ∈ Ω,

|z| ≤ eψ(w) = |g(w)|.
This completes the proof of Lemma 3.4. �

Combining (3.5) with Lemmas 3.3 and 3.4 we obtain

T̂ = {(z, w) : w ∈ Ω \ {0}, |z| ≤ |g(w)|} ∪D0.

Since g is non-vanishing on Ω, the set {(z, w) : w ∈ Ω, |z| < |g(w)|} is open and

contained in T̂ . This completes the proof of Theorem 3.1. �
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Remark 3.5. In Theorem 3.1 we have described the hull of T as a union of “hori-
zontal” disks |z| ≤ |g(w)|. The proof of Lemma 3.3 shows that we can also write
the hull (over Ω) as a union of “vertical” disks w ∈ Ω 7→ (ζg(w), w), where ζ ∈ D.
When |ζ| = 1, these disks are attached smoothly to T except at w = 0. The cluster
set of each such disk at w = 0 lies in {(z, 0) : a− b ≤ |z| ≤ a+ b}.

4. A Totally Real Klein Bottle with Three-dimensional Hull

Consider the map F = (F1,F2) defined by

F(θ, ϕ) =

(
e2iθk2(ϕ), e−iθ

h(ϕ)

k(ϕ)

)
with k, h as in (2.1). As in section 2, we set R = [0, π)×[−π, π). It is straightforward
to check the properties

(1) F(θ, ϕ+ 2π) = F(θ, ϕ) = F(θ + π,−ϕ);
(2) F is one-to-one on R;
(3) dF1 ∧ dF2 ̸= 0 on R.

Therefore K = F(R) is a totally real Klein bottle. We will give an explicit descrip-

tion of K̂ and show that it has topological dimension equal to three. In this case
we are able to dispense with the device of the covering torus. Since the methods
are otherwise similar to those in section 3, we will omit some of the details.

Note that if (z, w) = F(θ, ϕ) ∈ K, then zw2 = h2(ϕ). Set

c := {h2(ϕ) : ϕ ∈ [−π, π)}.

The curve c is the image under λ 7→ λ2 of the curve γ appearing in section 3; c is
a closed curve with a cusp at λ = 0, bounding a bounded simply connected region
O. If h(ϕ) ̸= 0, i.e., ϕ /∈ {−π, 0}, then h2(ϕ1) = h2(ϕ2) implies ϕ1 = ±ϕ2. We set

Cϕ = {(z, w) ∈ K : zw2 = h2(ϕ)}

We may write for ϕ /∈ {−π, 0},

Cϕ = {F (θ, ϕ) : θ ∈ [0, π)} ∪ {F (θ,−ϕ) : θ ∈ [0, π)} = {F (θ, ϕ) : θ ∈ [−π, π)},

where the second equality uses the fact that F(θ, ϕ) = F(θ + π,−ϕ). It is easily
verified that if ϕ /∈ {−π, 0}, the curve Cϕ is polynomially convex. Note that C0 =

{(z, 0) : |z| = (a± b)2} = C−π, and so Ĉ−π = Ĉ0 = D0 := {(z, 0) : |z| ≤ (a+ b)2}.
We let u be the solution to the Dirichlet problem

(4.1) △u = 0 in O, u(h2(ϕ)) = log(k2(ϕ)), ϕ ∈ (−π, 0) ∪ (0, π)

(since k is even, the boundary condition is well-defined). Then u is bounded in
O and assumes its boundary values continuously on c \ {0}. Let v be a harmonic
conjugate for u in O and set g = exp(u+iv). Then g extends continuously to c\{0}
and in particular |g(λ)| → k2(ϕ) as λ→ h2(ϕ) ∈ c \ {0}.

The function λ/g(λ) is nonvanishing on O, so we may choose a branch of the
square root and define, for each fixed τ ∈ [−π, π) and λ ∈ O,

Gτ (λ) =

(
e2iτg(λ), e−iτ

√
λ

g(λ)

)
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Theorem 4.1.

K̂ = {Gτ (λ) : τ ∈ [−π, π), λ ∈ O \ {0}} ∪ D0,

and K̂ \ K has topological dimension equal to three.

Proof. Suppose that p = (z0, w0) ∈ K̂ and z0w
2
0 = λ0 ∈ c \ {0}. If λ0 = h2(ϕ), we

claim that p ∈ Cϕ. For if p /∈ Cϕ, by the polynomial convexity of Cϕ we may choose

a polynomial Q with Q(p) = 1 and |Q| < 1 on Cϕ. We can also choose f ∈ P (O)
with f(λ0) = 1 and |f | < 1 on c\{λ0}. Repeating the argument in Lemma 3.2 with
zfn(w) replaced by Q(z, w)fn(zw2) we arrive at a contradiction, proving the claim.

The same argument with D0 replacing Cϕ shows that {(z, w) ∈ K̂ : zw2 = 0} = D0.
If as above λ0 = h2(ϕ) ∈ c \ {0}, then for some real σ,

lim
λ∈O→λ0

Gτ (λ) =

(
e2iτeiσk2(ϕ),±e−iτ h(ϕ)

eiσ/2k(ϕ)

)
= F(τ + σ/2,±ϕ) ∈ K,

where the sign depends on the choice of square root. Therefore, after precomposing
with a conformal map from D to O, we see that the image of λ 7→ Gτ (λ) is an H

∞

disk with boundary in K, for each τ , and so {Gτ (λ) : τ ∈ [−π, π), λ ∈ O\{0}} ⊂ K̂.

It remains to show that if (z, w) ∈ K̂ \K, and zw2 = λ ∈ O, then (z, w) = Gτ (λ)
for some τ . We apply Wermer’s Theorem (see section 3) with A = P (K), π(z, w) =
zw2, f(z, w) = z and f(z, w) = w respectively to obtain subharmonic functions
ψ1, ψ2 in O, defined by

ψ1(λ) = log(max{|z| : (z, w) ∈ K̂, zw2 = λ}),

ψ2(λ) = log(max{|w| : (z, w) ∈ K̂, zw2 = λ}).

Since ψ2 is not bounded away from zero on O, we consider Ψj = exp(ψj), j = 1, 2.
Then each Ψj is subharmonic and bounded on O. Arguments similar to those in
Lemma 3.4 show that

Ψ1(λ) = |g(λ)|, Ψ2(λ) =

∣∣∣∣ λ

g(λ)

∣∣∣∣1/2
for all λ ∈ O. If (z, w) ∈ K̂ and zw2 = λ ∈ O, we therefore have

(4.2) |z| ≤ |g(λ)|, |w| ≤
∣∣∣∣ λ

g(λ)

∣∣∣∣1/2 .
Therefore

|λ| = |zw2| ≤ |λ|,

implying that both inequalities in (4.2) are in fact equalities. We may thus write

z = e2iτg(λ) for some τ , and then the fact that zw2 = λ implies w = e−iτ
√
λ/g(λ)

(replacing τ by τ +π if necessary to match the sign of the root.) Therefore (z, w) =

Gτ (λ). This completes the proof that K̂ = {Gτ (λ) : τ ∈ [−π, π), λ ∈ O \ {0}}∪D0.

Note that K̂ \ K is the union of {Gτ (λ) : τ ∈ [−π, π), λ ∈ O} and D0 \ {(z, 0) :
|z| = (a± b)2}. It is not hard to check that (τ, λ) 7→ Gτ (λ) is locally one-to-one on

[−π, π)×O, and so K̂ \ K has topological dimension three.
�
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