A Cauchy-Green Formula on the Unit Sphere in C^2

John T. Anderson and John Wermer

ABSTRACT. In 1977 G. Henkin introduced an integral formula for solving $\overline{\partial}_b f = \mu$ where μ is a measure, on the boundary of a smooth strictly convex domain. This result is closely related to a "Cauchy-Green" formula on the sphere (see Chen and Shaw [3]). We give a direct elementary proof of the Cauchy-Green Theorem on the unit sphere and derive Henkin's solution of the $\overline{\partial}_b$ equation from this. We also give an application to an approximation result.

1. Introduction

Let Ω be a domain in the plane, with smooth boundary Γ . The classical Cauchy-Green formula states that for any $\phi \in C^1(\overline{\Omega})$ and $z \in \Omega$,

(1.1)
$$\phi(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\phi(\zeta)}{\zeta - z} \, d\zeta - \frac{1}{2\pi i} \int_{\Omega} \frac{\partial \phi}{\partial \zeta} \, \frac{d\bar{\zeta} \wedge d\zeta}{\zeta - z}$$

Note that the first term on the right of (1.1) is a holomorphic function Φ of z in the domain Ω . In fact, Φ extends continuously to $\overline{\Omega}$, and hence defines an element of the algebra $A(\overline{\Omega})$ consisting of functions holomorphic in Ω and continuous on $\overline{\Omega}$. Of course, if $\phi \in A(\overline{\Omega})$, (1.1) reduces to the Cauchy integral formula and $\Phi = \phi$.

The representation (1.1) has many applications in complex analysis. In the theory of approximation of continuous functions on a compact set $K \subset \mathbf{C}$ by rational functions with poles off K, one is led by considerations of duality to examine measures supported on K. The Cauchy transform of such a measure μ is defined by

(1.2)
$$\hat{\mu}(z) = \int_{K} \frac{d\mu(\zeta)}{\zeta - z}$$

The integral defining $\hat{\mu}$ converges absolutely for almost all $z \in \mathbf{C}$. Using (1.1), one can easily show that for any smooth compactly supported function ϕ ,

(1.3)
$$\int_{K} \phi(z) \ d\mu(z) = \frac{1}{2\pi i} \int_{\mathbf{C}} \frac{\partial \phi}{\partial \bar{z}} \ \hat{\mu}(z) \ d\bar{z} \wedge dz$$

That is, $\hat{\mu}$ satisfies the equation

(1.4)
$$\frac{\partial \hat{\mu}}{\partial \bar{z}} = -\pi\mu$$

1991 Mathematics Subject Classification. Primary 32A25, Secondary 32E30.

©0000 (copyright holder)

in the sense of distributions, and hence defines a holomorphic function on $\mathbf{C} \setminus K$. The Cauchy transform is a key tool in rational approximation theory in the plane.

We have been motivated by problems of rational approximation for subsets of the boundary S of the unit ball in \mathbb{C}^2 . It is possible to do a kind of function theory on S analogous to the theory of analytic functions in the plane. The operator $\partial/\partial \bar{z}$ is replaced by the tangential Cauchy-Riemann operator

(1.5)
$$X = z_2 \frac{\partial}{\partial \bar{z}_1} - z_1 \frac{\partial}{\partial \bar{z}_2}.$$

X is well-defined on $C^1(S)$ and for any relatively open subset Ω of S, annihilates the restrictions to Ω of functions holomorphic in a neighborhood of Ω in \mathbb{C}^2 . The solutions to $X\phi = 0$ on Ω are known as CR functions on Ω . A good general reference for the theory of CR functions is the book [2].

One would like an analogue of the Cauchy transform for measures on S. Given a measure μ on S, G. Henkin in 1977 [4] constructed a function K_{μ} , summable with respect to three-dimensional Hausdorff measure $d\sigma$ on S, satisfying

(1.6)
$$\bar{\partial}_b K_\mu = -2\pi^2 \mu$$

in the sense of distributions, i.e.,

(1.7)
$$\int_{S} \phi(z) \ d\mu(z) = \frac{1}{2\pi^2} \int_{S} K_{\mu} \ X\phi \ d\sigma(z)$$

for all smooth ϕ , provided that μ satisfies the necessary condition that $\int_S P \ d\mu = 0$ for all polynomials P. Note that (1.7) implies that K_{μ} is a CR function (in the sense of distributions) off the support of μ .

In attempting to use and understand Henkin's construction in the study of rational approximation on subsets of S, we were led to the analogue of the Cauchy-Green formula (1.1) that we present below. It plays the same role with respect to Henkin's formula (1.6) as the classical Cauchy-Green formula on the plane does to equation (1.4). The resulting formula, which is contained in our Theorems 2.1 and 3.1 below, is not new. It is given in a more general setting in Chen and Shaw ([3], see the remarks following Corollary 11.3.5) as a consequence of the theory of Henkin for solving the $\bar{\partial}_b$ equation on the boundary of a strictly convex domain in \mathbf{C}^n . Our approach to establishing this Cauchy-Green formula on the sphere in \mathbf{C}^2 is direct and elementary, and leads immediately to the property (1.6) of Henkin's transform K_{μ} .

Let $A(\mathbf{B})$ denote the algebra of functions holomorphic in the open unit ball **B** of \mathbf{C}^2 and continuous on its closure. We seek a kernel $H(\zeta, z)$, defined for $(\zeta, z) \in S \times S$, such that for all $\phi \in C^1(S)$, there exists $\Phi \in A(\mathbf{B})$ with

(1.8)
$$\phi(z) = \Phi(z) + c \int_{S} H(\zeta, z) \,\overline{\partial} \phi(\zeta) \wedge \omega(\zeta)$$

for all $z \in S$, where $\omega(\zeta) = d\zeta_1 \wedge d\zeta_2$, $\bar{\partial}\phi = (\partial\phi/\partial\bar{z}_1)d\bar{z}_1 + (\partial\phi/\partial\bar{z}_2)d\bar{z}_2$, and c is a universal constant. We call (1.8) a "Cauchy-Green formula for S". We will demand that H have the following properties:

- **a:** $H(\zeta, z)$ is continuous on $S \times S \setminus \{z = \zeta\}$;
- **b**: For all unitary transformations U of determinant 1, $H(U\zeta, Uz) = H(\zeta, z)$;
- c: $\int_{S} |H(\zeta, e_1)| d\sigma(\zeta) < \infty$, where $e_1 = (1, 0)$, and $d\sigma$ is three-dimensional Hausdorff measure¹ on S.

Properties (b) and (c) together with the unitary invariance of $d\sigma$ imply that H is uniformly summable with respect to $d\sigma$, i.e., there exists a constant C so that

(1.9)
$$\int_{S} |H(\zeta, z)| \, d\sigma(\zeta) \le C, \ \forall z \in S$$

They also imply that the integral

(1.10)
$$K(z) \equiv \int_{S} H(\zeta, z) \,\overline{\partial} \phi(\zeta) \wedge \omega(\zeta)$$

appearing in (1.8) is finite for all $z \in S$, since $\overline{\partial}\phi \wedge \omega$ is absolutely continuous with respect to $d\sigma$. A routine calculation gives

(1.11)
$$\overline{\partial}\phi\wedge\omega=2(X\phi)\ d\sigma$$

on S, where X is the operator in (1.5), for smooth ϕ . We can say more about K:

LEMMA 1.1. If H satisfies properties (a), (b) and (c), then K is continuous on S.

PROOF. Fix $z \in S$. For $\epsilon > 0$, put $S_{\epsilon}(z) = S \setminus \{|z - \zeta| \le \epsilon\}$ and $S'_{\epsilon} = S \cap \{|z - \zeta| \le \epsilon\}$. Let

$$K_{\epsilon}(z) = \int_{S_{\epsilon}(z)} H(\zeta, z) \,\overline{\partial} \phi(\zeta) \wedge \omega(\zeta)$$

Then K_{ϵ} is continuous on S, by property (a) of H. For all $z \in S$, by (1.11),

$$|K(z) - K_{\epsilon}(z)| = \left| \int_{S'_{\epsilon}(z)} H(\zeta, z) \ \overline{\partial}\phi(\zeta) \wedge \omega(\zeta) \right| \le M \int_{S'_{\epsilon}(z)} |H(\zeta, z)| d\sigma(\zeta)$$

where M is a constant independent of z and ϵ . Let $e_1 = (1,0)$ and choose a unitary transformation U of \mathbf{C}^2 with $Ue_1 = z$; then $U(S'_{\epsilon}(e_1)) = S'_{\epsilon}(z)$. Then using property (b),

$$\int_{S'_{\epsilon}(z)} |H(\zeta, z)| \, d\sigma(\zeta) = \int_{S'_{\epsilon}(e_1)} |H(U\eta, Ue_1)| \, d\sigma(U\eta) = \int_{S'_{\epsilon}(e_1)} |H(\eta, e_1)| \, d\sigma(\eta)$$

Since $\int_{S} |H(\eta, e_1)| d\sigma(\eta)$ is finite by assumption (c),

$$\lim_{\epsilon \to 0} \int_{S'_{\epsilon}(e_1)} |H(\eta, e_1)| d\sigma(\eta) = 0$$

It follows that $K_{\epsilon} \to K$ uniformly on S, and so K is continuous, as claimed.

We say that a measure μ on S is orthogonal to polynomials if

(1.12)
$$\int_{S} P d\mu = 0, \ \forall \text{ holomorphic polynomials } P$$

Given any measure μ on S, define

(1.13)
$$K_{\mu}(\zeta) = \int_{S} H(\zeta, z) \ d\mu(z), \ \zeta \in S$$

 $^{{}^{1}}d\sigma$ is not normalized; $\sigma(S) = 2\pi^{2}$.

LEMMA 1.2. A kernel $H(\zeta, z)$ satisfying (a), (b) and (c) satisfies (1.8) if and only if for each measure μ on S orthogonal to polynomials

(1.14)
$$\int_{S} \phi \ d\mu = c \int_{S} K_{\mu} \ \overline{\partial} \phi \wedge \omega$$

for all $\phi \in C^1(S)$.

PROOF. Suppose first that $H(\zeta, z)$ satisfies (a), (b), (c) and (1.8). Let μ be a measure on S orthogonal to polynomials. Fix $\phi \in C^1(S)$, and let $\Phi \in A(\mathbf{B})$ be as in (1.8). Since polynomials are dense in $A(\mathbf{B})$, $\int_S \Phi d\mu = 0$. Hence by (1.8),

$$\begin{split} \int_{S} \phi(z) d\mu(z) &= \int_{S} \left(c \int_{S} H(\zeta, z) \ \overline{\partial} \phi(\zeta) \wedge \omega(\zeta) \right) d\mu(z) \\ &= \int_{S} \left(c \int_{S} H(\zeta, z) d\mu(z) \right) \overline{\partial} \phi(\zeta) \wedge \omega(\zeta) \\ &= c \int_{S} K_{\mu}(\zeta) \ \overline{\partial} \phi(\zeta) \wedge \omega(\zeta) \end{split}$$

so that (1.14) holds. The application of Fubini's theorem is justified by (1.9).

Next, suppose that (1.14) holds, for H satisfying (a), (b) and (c). Choose a measure μ on S orthogonal to polynomials. Fix a function $\phi \in C^1(S)$, and define

$$\Phi(z) = \phi(z) - c \int_{S} H(\zeta, z) \,\overline{\partial}\phi(\zeta) \wedge \omega(\zeta)$$

By Lemma 1.1, Φ is continuous on S, and

$$\begin{split} \int_{S} \Phi(z) d\mu(z) &= \int_{S} \phi(z) d\mu(z) - c \int_{S} \left(\int_{S} H(\zeta, z) d\mu(z) \right) \overline{\partial} \phi \wedge \omega(\zeta) \\ &= \int_{S} \phi(z) d\mu(z) - c \int_{S} K_{\mu}(\zeta) \ \overline{\partial} \phi(\zeta) \wedge \omega(\zeta) \\ &= 0 \end{split}$$

by (1.14). Since this holds for all μ orthogonal to polynomials, $\Phi \in A(\mathbf{B})$, and so (1.8) follows.

In 1977, in [4] G. Henkin introduced the kernel

(1.15)
$$H(\zeta, z) = \frac{\bar{\zeta_1} \bar{z_2} - \bar{\zeta_2} \bar{z_1}}{|1 - \langle z, \zeta \rangle|^2}, \quad \zeta, z \in S$$

where \langle , \rangle denotes the Hermitian inner product $\langle z, \zeta \rangle = z_1 \overline{\zeta_1} + z_2 \overline{\zeta_2}$, and proved the formula (1.14) using this kernel. It is easy to check that H satisfies properties (a), (b) and (c) above. Formula (1.14) on S is actually very special case of a class of general integral formulae on smooth convex domains established in [4]. In her thesis [5], H.P. Lee gave an elementary proof of Henkin's formula for S; the paper [8] of Varopoulous also contains an exposition of Henkin's results on the sphere. For applications of Henkin's formula to rational approximation, see the paper [6] of Lee and Wermer.

In this paper, we shall

- 1. give a direct proof of (1.8), using Henkin's kernel (1.15);
- 2. give a formula for Φ , in terms of ϕ ;
- 3. deduce an approximation result (Theorem 4.1) from (1.8).

1.1. Acknowledgment. The first author wishes to thank Joseph Cima for helpful conversations on the results in section 3.

2. A Cauchy-Green Formula using Henkin's Kernel

With H as in (1.15) and $\phi \in C^1(S)$ as in section 1 put

$$K(z) = \int_{S} H(\zeta, z) \,\overline{\partial} \phi(\zeta) \wedge \omega(\zeta)$$

For $a \in int(\Delta)$, put $r = \sqrt{1 - |a|^2}$ and denote by γ_a the circle $z_2 = r\tau$, $|\tau| = 1$ in the z_2 -plane.

LEMMA 2.1. Fix $a \in \Delta$. For $n = 0, 1, 2, \ldots$ we have, putting $z = (a, z_2)$,

(2.1)
$$\int_{\gamma_a} K(z) z_2^n dz_2 = 4\pi^2 \int_{\gamma_a} \phi(z) z_2^n dz_2$$

PROOF.

$$\begin{split} \int_{\gamma_a} K(a, z_2) z_2^n \, dz_2 &= \int_{\gamma_a} \left(\int_S \frac{\bar{\zeta_1} \bar{z}_2 - \bar{\zeta_2} \bar{a}}{|1 - a\bar{\zeta_1} - z_2 \bar{\zeta_2}|^2} \,\overline{\partial} \phi(\zeta) \wedge \omega(\zeta) \right) z_2^n \, dz_2 \\ &= \int_S \left(\int_{|\tau|=1} \frac{(\bar{\zeta_1} r \bar{\tau} - \bar{\zeta_2} \bar{a}) r^{n+1} \tau^n \, d\tau}{(1 - a\bar{\zeta_1} - r \tau \bar{\zeta_2})(1 - \bar{a}\zeta_1 - r \bar{\tau}\zeta_2)} \right) \overline{\partial} \phi(\zeta) \wedge \omega(\zeta) \end{split}$$

We denote the inner integral by $I(\zeta)$. Multiplying both numerator and denominator of the integrand by τ , we get

$$I(\zeta) = \int_{|\tau|=1} \frac{(\bar{\zeta_1}r - \bar{\zeta_2}\bar{a}\tau)r^{n+1}\tau^n \, d\tau}{r\bar{\zeta_2} \left[\frac{1-a\bar{\zeta_1}}{r\bar{\zeta_2}} - \tau\right] (1-\bar{a}\zeta_1) \left[\tau - \frac{r\zeta_2}{1-\bar{a}\zeta_1}\right]}$$

Let

$$au_1 = \frac{1 - a\bar{\zeta_1}}{r\bar{\zeta_2}}, \text{ and } au_2 = \frac{r\zeta_2}{1 - \bar{a}\zeta_1}$$

Note that $\tau_1 \overline{\tau_2} = 1$. We have

$$\begin{aligned} |r\zeta_2|^2 - |1 - \bar{a}\zeta_1|^2 &= (1 - |a|^2)(1 - |\zeta_1|^2) - |1 - \bar{a}\zeta_1|^2 \\ &= 1 - |a|^2 - |\zeta_1|^2 + |a|^2||\zeta_1|^2 - 1 - |\bar{a}|^2|\zeta_1|^2 + \bar{a}\zeta_1 + a\bar{\zeta_1} \\ &= -(|a|^2 + |\zeta_1|^2 - \bar{a}\zeta_1 - a\bar{\zeta_1}) \\ &= -|a - \zeta_1|^2 \end{aligned}$$

It follows that $|r\zeta_2|^2 < |1 - \bar{a}\zeta_1|^2$ unless $a = \zeta_1$, and so $|\tau_2| < 1$, and $|\tau_1| > 1$, for $\zeta_1 \neq a$. The Residue Theorem gives

$$\begin{aligned} \frac{1}{2\pi i}I(\zeta) &= \left[\frac{\bar{\zeta_1}r - \bar{\zeta_2}\bar{a}\tau_2}{r\bar{\zeta_2}(\frac{1-a\bar{\zeta_1}}{r\bar{\zeta_2}} - \tau_2)(1-\bar{a}\zeta_1)}\right]r^{n+1}\tau_2^n \\ &= \left[\frac{\bar{\zeta_1}r - \bar{\zeta_2}\bar{a}(\frac{r\bar{\zeta_2}}{1-\bar{a}\zeta_1})}{r\bar{\zeta_2}(\frac{1-a\bar{\zeta_1}}{r\bar{\zeta_2}} - \frac{r\bar{\zeta_2}}{1-\bar{a}\zeta_1})(1-\bar{a}\zeta_1)}\right]r^{n+1}\tau_2^n \\ &= \left[\frac{(1-\bar{a}\zeta_1)\bar{\zeta_1}r - (\bar{\zeta_2}\bar{a})r\zeta_2}{r\bar{\zeta_2}(\frac{1-\bar{a}\zeta_1|^2}{r\bar{\zeta_2}} - r\zeta_2)(1-\bar{a}\zeta_1)}\right]r^{n+1}\tau_2^n \\ &= \left[\frac{\bar{\zeta_1}r - \bar{a}|\zeta_1|^2r - \bar{a}|\zeta_2|^2r}{|1-\bar{a}\zeta_1|^2 - r^2|\zeta_2|^2}\right]\frac{r^{n+1}\tau_2^n}{1-\bar{a}\zeta_1} \\ &= \left[\frac{(\bar{\zeta_1}-\bar{a})r}{|\zeta_1-a|^2}\right]\frac{r^{n+1}\tau_2^n}{1-\bar{a}\zeta_1} \\ &= \left(\frac{r}{\zeta_1-a}\right)r^{n+1}\left(\frac{r\zeta_2}{1-\bar{a}\zeta_1}\right)^n\left(\frac{1}{1-\bar{a}\zeta_1}\right) \\ &= \frac{r^{2n+2}\zeta_2^n}{(1-\bar{a}\zeta_1)^{n+1}}\left(\frac{1}{\zeta_1-a}\right)\end{aligned}$$

Thus

(2.2)
$$I(\zeta) = 2\pi i \cdot \frac{r^{2n+2} \zeta_2^n}{(1-\bar{a}\zeta_1)^{n+1}} \left(\frac{1}{\zeta_1 - a}\right)$$

Let S_{ϵ} be the part of S lying over the region

$$\{|\zeta_1 - a| \ge \epsilon\} \cap \{|\zeta_1| \le 1\}$$

in the $\zeta_1\text{-plane}.$ Let T_ϵ denote the boundary of $S_\epsilon.$ We claim that

(2.3)
$$\int_{\gamma_a} K(z) z_2^n dz_2 = -\lim_{\epsilon \to 0} \left[\int_{T_\epsilon} \phi(\zeta) I(\zeta) \omega(\zeta) \right]$$

To establish the claim, note that

$$\begin{split} \int_{\gamma_a} K(z) z_2^n \, dz_2 &= \int_S \overline{\partial} \phi \wedge \omega \cdot I \\ &= \lim_{\epsilon \to 0} \int_{S_\epsilon} \overline{\partial} \phi \wedge \omega \cdot I \\ &= \lim_{\epsilon \to 0} \int_{S_\epsilon} d(\phi \; \omega I) \end{split}$$

since I is holomorphic on S_{ϵ} for $\epsilon > 0$. By Stokes' Theorem, the latter integral equals

$$-\int_{T_\epsilon}\phi\;\omega I$$

proving the claim.

Note that T_{ϵ} is the torus

$$\zeta_1 = a + \epsilon e^{i\theta}, \ \zeta_2 = \sqrt{1 - |\zeta_1|^2} e^{i\psi}, \ 0 \le \theta, \psi \le 2\pi.$$

On T_{ϵ} we have the following relations:

$$\begin{split} \phi(\zeta) &= \phi(a, re^{i\psi}) + O(\epsilon); \\ \frac{\zeta_2^n}{(1 - \bar{a}\zeta_1)^{n+1}} &= \frac{r^n e^{in\psi}}{(1 - |a|^2)^{n+1}} + O(\epsilon) = \frac{r^n e^{in\psi}}{r^{2n+2}} + O(\epsilon); \\ d\zeta_1 &= i\epsilon e^{i\theta} d\theta, \ d\bar{\zeta_1} = -i\epsilon e^{-i\theta} d\theta; \\ d\zeta_2 &= \frac{-\zeta_1 d\bar{\zeta_1} - \bar{\zeta_1} d\zeta_1}{2\sqrt{1 - |\zeta_1|^2}} e^{i\psi} + i\sqrt{1 - |\zeta_1|^2} e^{i\psi} d\psi = ire^{i\psi} d\psi + O(\epsilon); \\ \frac{1}{\zeta_1 - a} &= \frac{1}{\epsilon e^{i\theta}}. \end{split}$$

Using this information together with (2.2) and (2.3) we obtain

$$\int_{\gamma_a} K(z) z_2^n = \lim_{\epsilon \to 0} \left[-2\pi i \int_{T_\epsilon} \phi(\zeta) r^{2n+2} \frac{\zeta_2^n}{(1 - \bar{a}\zeta_1)^{n+1}} \frac{1}{(\zeta_1 - a)} \, d\zeta_1 \wedge d\zeta_2 \right]$$

For fixed ϵ , we rewrite the expression in brackets as

$$-2\pi i \int_{T_{\epsilon}} \phi(a, re^{i\psi}) r^n e^{in\psi} id\theta \wedge ire^{i\psi} d\psi + O(\epsilon)$$

Letting ϵ go to zero we obtain

$$\begin{aligned} \int_{\gamma_a} K(z) z_2^n \, dz_2 &= 2\pi \int_0^{2\pi} d\theta \int_0^{2\pi} \phi(a, r e^{i\psi}) (r e^{i\psi})^n (i r e^{i\psi}) \, d\psi \\ &= 4\pi^2 \int_{\gamma_a} \phi(z) z_2^n \, dz_2 \end{aligned}$$

This completes the proof of (2.1) and Lemma 2.1.

Next, we define an operator T on $C^1(S)$ as follows:

(2.4)
$$(T\phi)(z) = 4\pi^2 \phi(z) - K(z), \text{ for } z \in S, \phi \in C^1(S)$$

Letting X denote the tangential Cauchy-Riemann operator on S as in section 1, using (1.11) we can write

$$T\phi = 4\pi^2 \phi - \int_S H(\zeta, z) \ (X\phi)(\zeta) d\sigma(\zeta)$$

LEMMA 2.2. Fix $\phi \in C^1(S)$. Let L be a complex line in \mathbb{C}^2 . Then the restriction of $T(\phi)$ to $L \cap S$ extends analytically to $L \cap \mathbb{B}$.

PROOF. Lemma 2.1 gives us, for each $a \in int(\Delta)$, that

(2.5)
$$\int_{\gamma_a} (T\phi)(z) z_2^n dz_2 = 0, \ n = 0, 1, 2, \dots$$

Note that $\gamma_a = L_a \cap S$, where L_a is the line $\{z_1 = a\}$. Then (2.5) implies that $T\phi$ extends analytically to the disk $L_a \cap \mathbf{B}$. Using the unitary invariance of H, σ , and X, it is not hard to check that for all $\phi \in C^1(S)$,

(2.6)
$$(T\phi) \circ U = T(\phi \circ U)$$

Fix a complex line L. Let N denote the complex line passing through the origin which is orthogonal to L, and let z^0 denote the intersection point $N \cap L$. Write $L = \{z^0 + \zeta t \mid t \in \mathbf{C}\}$ for some unit vector ζ . If U is a unitary transformation with $Ue_2 = \zeta$, where $e_2 = (0, 1)$ then U maps the line $\{z_2 = 0\}$ to N, and maps some point (a, 0) to z^0 . Then $U((a, 0) + t(0, 1)) = z^0 + t\zeta$, for all $t \in \mathbf{C}$. So U maps

the line L_a to L and maps the disk $L_a \cap \mathbf{B}$ to $L \cap \mathbf{B}$. By (2.6), $T\phi \mid_{L \cap S}$ extends analytically to the disk $L \cap \mathbf{B}$ if and only if $(T\phi) \circ U \mid_{L_a \cap S}$ extends to $L_a \cap \mathbf{B}$. This last is true by (2.5), as we have noted earlier, and so the proof is complete.

By Lemma 1.1, since H satisfies properties (a), (b) and (c) of section 1, K and thus $T\phi$ are continuous on S. By Lemma 2.2, $T\phi$ has the "one-dimensional extension property" as defined by Stout in [7], p. 105. A theorem of Agranovskii and Val'skii [1] then gives that $T\phi$ lies in the ball algebra $A(\mathbf{B})$. Putting $\Phi = T(\phi)$, we have arrived at

THEOREM 2.3. Let $\phi \in C^1(S)$. Then there exists $\Phi \in A(\mathbf{B})$ such that

$$4\pi^2\phi(z) = \Phi(z) + \int_S H(\zeta, z) \ \overline{\partial}\phi(\zeta) \wedge \omega(\zeta)$$

where H is Henkin's kernel

$$H(\zeta,z) = \frac{\bar{\zeta_1} \bar{z}_2 - \bar{\zeta_2} \bar{z}_1}{|1 - \langle z, \zeta \rangle |^2}$$

3. The Cauchy-Green formula and the Cauchy transform

In this section we identify the ball algebra function Φ appearing in Theorem 2.3 as a certain principal value of the Cauchy transform of ϕ . The Cauchy kernel for **B** is

$$C(z,\zeta) = \frac{1}{(1-\langle z,\zeta \rangle)^2}$$

For $z \in S$ we set

$$N_{\epsilon}(z) = \{\zeta \in S : | \langle \zeta, z \rangle | > 1 - \epsilon\}$$

and we denote the boundary of $N_{\epsilon}(z)$ by $\Gamma_{\epsilon}(z)$.

THEOREM 3.1. Fix $\phi \in C^1(S)$. If Φ is as in Theorem 2.3, then for $z \in S$,

$$\Phi(z) = 2 \lim_{\epsilon \to 0} \int_{S \setminus N_{\epsilon}(z)} \phi(\zeta) C(z,\zeta) \, d\sigma(\zeta)$$

REMARK 3.2. Since $C(z, \cdot) \notin L^1(d\sigma)$, it is not immediate that the limit in Theorem 3.1 exists.

PROOF. As in sections 1 and 2, set

$$K(z) = \int_{S} H(\zeta, z) \ \overline{\partial} \phi(\zeta) \wedge \omega(\zeta) = \lim_{\epsilon \to 0} \int_{S \setminus N_{\epsilon}(z)} H(\zeta, z) \ \overline{\partial} \phi(\zeta) \wedge \omega(\zeta)$$

For $\epsilon > 0$ fixed,

$$\begin{split} \int_{S \setminus N_{\epsilon}(z)} H(\zeta, z) \ \overline{\partial}\phi(\zeta) \wedge \omega(\zeta) &= \int_{S \setminus N_{\epsilon}(z)} d[H(\zeta, z)\phi(\zeta) \wedge \omega(\zeta)] \\ &- \int_{S \setminus N_{\epsilon}(z)} [\overline{\partial}H(\zeta, z)] \wedge \phi(\zeta) \wedge \omega(\zeta) \\ &= \int_{\Gamma_{\epsilon}(z)} H(\zeta, z) \ \overline{\partial}\phi(\zeta) \wedge \omega(\zeta) \\ &- 2 \int_{S \setminus N_{\epsilon}(z)} (XH)(\zeta, z) \ \phi(\zeta) \ d\sigma(\zeta) \end{split}$$

by Stokes' theorem, if $\Gamma_{\epsilon}(z)$ is oriented as the boundary of $S \setminus N_{\epsilon}(z)$. We have also used equation (1.11) from section 1. A computation shows (differentiation is in the ζ variable)

$$(XH)(\zeta, z) = -C(z, \zeta)$$

so that

$$K(z) = \lim_{\epsilon \to 0} \left[\int_{\Gamma_{\epsilon}(z)} H(\zeta, z) \ \phi(\zeta) \wedge \omega(\zeta) - 2 \int_{S \setminus N_{\epsilon}(z)} C(\zeta, z) \ \phi(\zeta) d\sigma(\zeta) \right]$$

Since

$$\Phi(z) = 4\pi^2 \phi(z) - K(z)$$

by Theorem 2.3, the proof will be complete if we can show that

(3.1)
$$\lim_{\epsilon \to 0} \int_{\Gamma_{\epsilon}(z)} H(\zeta, z) \,\phi(\zeta) \wedge \omega(\zeta) = 4\pi^2 \phi(z)$$

To establish (3.1), choose a unitary map U with $Ue_1 = z$. Then for fixed $\epsilon > 0$,

$$\int_{\Gamma_{\epsilon}(z)} H(\zeta, z) \ \phi(\zeta) \wedge \omega(\zeta) = \int_{\Gamma_{\epsilon}(e_1)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(e_1)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) \wedge \omega(\eta) = \int_{\Gamma_{\epsilon}(z)} H(\eta, e_1) \ (\phi \circ U)(\eta) = \int_{\Gamma_{\epsilon}(z)}$$

The torus $\Gamma_{\epsilon}(e_1) = \{\eta : |\eta_1| = 1 - \epsilon\}$, oriented as the boundary of $S \setminus N_{\epsilon}(e_1)$, is parametrized by

$$\eta_1 = (1 - \epsilon)e^{i\theta_1}, \ \eta_2 = r_\epsilon e^{i\theta_2}, \ 0 \le \theta_1, \theta_2 \le 2\pi$$

where

$$r_{\epsilon} = \sqrt{1 - (1 - \epsilon)^2}$$

Then on $\Gamma_{\epsilon}(e_1)$,

$$\omega(\eta) = d\eta_1 \wedge d\eta_2 = -(1-\epsilon)r_\epsilon e^{i\theta_1} e^{i\theta_2} d\theta_1 \wedge d\theta_2,$$

$$(\phi \circ U)(\eta) = (\phi \circ U)(e^{i\theta_1}, 0) + O(\epsilon),$$

 and

$$H(\eta, e_1) = \frac{-r_{\epsilon} e^{-i\theta_2}}{|1 - (1 - \epsilon)e^{i\theta_1}|^2}$$

. .

which gives

$$\int_{\Gamma_{\epsilon}(z)} H(\zeta, z) \,\phi(\zeta) \wedge \omega(\zeta) = \int_{\Gamma_{\epsilon}(e_1)} H(\eta, e_1) \,(\phi \circ U)(\eta) \wedge \omega(\eta)$$

$$= \int_0^{2\pi} \int_0^{2\pi} \frac{(1-\epsilon)r_{\epsilon}^2 e^{i\theta_1}(\phi \circ U)(e^{i\theta_1}, 0)}{|1-(1-\epsilon)e^{i\theta_1}|^2} d\theta_1 d\theta_2 + I_{\epsilon}$$

where

$$|I_{\epsilon}| \le C \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{r_{\epsilon}^{2}}{|1 - (1 - \epsilon)e^{i\theta_{1}}|^{2}} d\theta_{1} d\theta_{2}$$

for some C > 0. An application of the Poisson integral formula shows that the first integral in (3.2) converges to $4\pi^2(\phi \circ U)(e_1) = 4\pi^2\phi(z)$ as $\epsilon \to 0$, while $\lim_{\epsilon \to 0} I_{\epsilon} = 0$. This completes the proof.

4. An Approximation Theorem

Fix $\phi \in C^1(S)$. The quantity

$$\operatorname{dist}(\phi, A(\mathbf{B})) = \inf\{\|\phi - g\| : g \in A(\mathbf{B})\}$$

where $\|\cdot\|$ is the uniform norm on S measures how closely ϕ can be approximated by polynomials on S.

THEOREM 4.1. There exists C > 0 so that for all $\phi \in C^1(S)$,

 $dist(\phi, A(\mathbf{B})) \le C \|X\phi\|$

PROOF. Let $||H||_1$ denote the $L^1 - d\sigma$ norm of Henkin's kernel $H(\cdot, z)$ (which is independent of $z \in S$). By the representation in Theorem 2.3, there exists $\Phi \in A(\mathbf{B})$ so that for $z \in S$,

$$\begin{aligned} |4\pi^2\phi(z) - \Phi(z)| &= \left| \int_S H(\zeta, z) \ \overline{\partial}\phi(\zeta) \wedge \omega(\zeta) \right| \\ &= 2 \left| \int_S H(\zeta, z) (X\phi)(\zeta) d\sigma(\zeta) \right| \\ &\leq 2 \|H\|_1 \|X\phi\| \end{aligned}$$

from which the result follows.

References

- M.L. Agranovskii and R.E. Val'skii, Maximality of Invariant Algebras of Functions, Siberian Math. J. 33 (1983), p. 227-250.
- [2] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, 1991.
- [3] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, American Mathematical Society, 2001
- G. M. Henkin, The Lewy Equation and Analysis on Pseudoconvex Manifolds, Russian Math. Surveys, 32:3 (1977); Uspehi Mat. Nauk 32:3 (1977), p. 57-118
- [5] H. P. Lee, Orthogonal Measures for Subsets of the Boundary of the Ball in \mathbb{C}^2 , Thesis, Brown University, 1979.
- [6] H. P. Lee and J. Wermer, Orthogonal Measures for Subsets of the Boundary of the Ball in C², in Recent Developments in Several Complex Variables, Princeton University Press, 1981, pp. 277-289.
- [7] E.L. Stout, The Boundary Values of Holomorphic Functions of Several Complex Variables, Duke Math. J. 44, 1977, p. 105-108.
- [8] N. Th. Varopoulos, BMO functions and the $\overline{\partial}$ -equation, Pac. J. Math. **71**, no. 1 (1977), pp. 221–273.

Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA $01610\mathchar`2395$

 $E\text{-}mail \ address:$ and erson @radius.holycross.edu

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RI 02912 *E-mail address*: wermer@math.brown.edu