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A Cauchy-Green Formula on the Unit Sphere in C?

John T. Anderson and John Wermer

ABSTRACT. In 1977 G. Henkin introduced an integral formula for solving
dpf = p where p is a measure, on the boundary of a smooth strictly con-
vex domain. This result is closely related to a “Cauchy-Green” formula on
the sphere (see Chen and Shaw [3]). We give a direct elementary proof of the
Cauchy-Green Theorem on the unit sphere and derive Henkin’s solution of the
Oy equation from this. We also give an application to an approximation result.

1. Introduction

Let Q be a domain in the plane, with smooth boundary I'. The classical
Cauchy-Green formula states that for any ¢ € C'(Q) and z € Q,
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Note that the first term on the right of (1.1) is a holomorphic function ® of z in
the domain Q. In fact, ® extends continuously to 2, and hence defines an element
of the algebra A(Q2) consisting of functions holomorphic in Q and continuous on .
Of course, if ¢ € A(2), (1.1) reduces to the Cauchy integral formula and ® = ¢.

The representation (1.1) has many applications in complex analysis. In the
theory of approximation of continuous functions on a compact set K C C by
rational functions with poles off K, one is led by considerations of duality to examine
measures supported on K. The Cauchy transform of such a measure p is defined
by

dp(C)
(1.2) i) = [ 21
KGC—%
The integral defining i converges absolutely for almost all z € C. Using (1.1), one
can easily show that for any smooth compactly supported function ¢,

(1.1)
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That is, 1 satisfies the equation
o
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in the sense of distributions, and hence defines a holomorphic function on C\ K.
The Cauchy transform is a key tool in rational approximation theory in the plane.

We have been motivated by problems of rational approximation for subsets of
the boundary S of the unit ball in C2. It is posible to do a kind of function theory
on S analogous to the theory of analytic functions in the plane. The operator §/9z
is replaced by the tangential Cauchy-Riemann operator

0 0

(15) X_Z26_Z]7218_22.
X is well-defined on C*(S) and for any relatively open subset Q of S, annihilates
the restrictions to  of functions holomorphic in a neighborhood of € in C2. The
solutions to X ¢ = 0 on 2 are known as CR functions on Q. A good general reference
for the theory of CR functions is the book [2].

One would like an analogue of the Cauchy transform for measures on S. Given
a measure p on S, G. Henkin in 1977 [4] constructed a function K, summable
with respect to three-dimensional Hausdorff measure do on S, satisfying

(1.6) K, = —21%u
in the sense of distributions, i.e.,
1
(1.7) [ 6G) du>) = o [ K X6 datz
Js 27'[' Js

for all smooth ¢, provided that p satisfies the necessary condition that fs Pdu=0
for all polynomials P. Note that (1.7) implies that K, is a CR function (in the
sense of distributions) off the support of u.

In attempting to use and understand Henkin’s construction in the study of
rational approximation on subsets of S, we were led to the analogue of the Cauchy-
Green formula (1.1) that we present below. It plays the same role with respect
to Henkin’s formula (1.6) as the classical Cauchy-Green formula on the plane does
to equation (1.4). The resulting formula, which is contained in our Theorems 2.1
and 3.1 below, is not new. It is given in a more general setting in Chen and Shaw
([3], see the remarks following Corollary 11.3.5) as a consequence of the theory of
Henkin for solving the d, equation on the houndary of a strictly convex domain in
C"”. Our approach to establishing this Cauchy-Green formula on the sphere in C?
is direct and elementary, and leads immediately to the property (1.6) of Henkin’s
transform K.

Let A(B) denote the algebra of functions holomorphic in the open unit ball
B of C? and continuous on its closure. We seek a kernel H((,z), defined for
(¢,2) € S x S, such that for all $ € C*(S), there exists ® € A(B) with

(18) b(z) = B(2) + /; H((,2) 36(C) A w(Q)

for all z € S, where w(¢) = d¢; A d(s, ¢ = (0/0z1)dz1 + (0¢/Dz2)dz2, and c is a
universal constant. We call (1.8) a “Cauchy-Green formula for S”. We will demand
that H have the following properties:
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a: H((,z) is continuous on S x S\ {z = (};
b: For all unitary transformations U of determinant 1, H(U(,Uz) = H((, 2);
c: [¢|H(( e1)| do(¢) < oo, where e; = (1,0), and do is three-dimensional
Hausdorff measure! on S.
Properties (b) and (c) together with the unitary invariance of do imply that H is
uniformly summable with respect to do, i.e., there exists a constant C so that

(1.9) / H(C,2)| do(¢) < C, V=€ S
S

They also imply that the integral

(1.10) K(z) = /S H(C,2) 36(0) Aw(C)

appearing in (1.8) is finite for all z € S, since ¢ A w is absolutely continuous with
respect to do. A routine calculation gives

(1.11) OpAw = 2(X¢) do
on S, where X is the operator in (1.5), for smooth ¢. We can say more about K:

LemMA 1.1. If H satisfies properties (a), (b) and (c), then K is continuous on
S.

ProoF. Fix z € S. For e > 0, put Sc(z) = S\ {|]z — (| < €} and S! =
Sn{lz = (| <e€}. Let

K.(2) = / H(C,2) 36(C) A w(Q)
JSc(2)

Then K. is continuous on S, by property (a) of H. For all z € S, by (1.11),

|K(2) — K(2)] = H(¢,2) 9¢(C) Aw(C)

Jsi(2)

<M [H (¢, 2)|do(C)
Jsi(2)

where M is a constant independent of z and e. Let e; = (1,0) and choose a
unitary transformation U of C? with Ue; = z; then U(S!(e1)) = S!(2). Then using
property (b),

/ H(C,2)] do(¢) = / |H<Un,Ue1>\da<Un>=/ H(y,e1)| do(n)
Jsi(2) Jsi(en)

JS5e(er)

Since [¢|H (1, e1)|do(n) is finite by assumption (c),

lim [ |H@,e)ldo(m) =0

e—0 . Sé(el)

It follows that K, — K uniformly on S, and so K is continuous, as claimed.
O

We say that a measure y on S is orthogonal to polynomials if
(1.12) / Pdu =0, V holomorphic polynomials P
Js
Given any measure p on S, define

(1.13) () = /S H(C.2) dulz), (€8
272,

ldo is not normalized; o(S) =
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LEMMA 1.2. A kernel H((, z) satisfying (a), (b) and (c) satisfies (1.8) if and
only if for each measure u on S orthogonal to polynomials

(1.14) /ngsdu:c/SKu%/\w

for all p € C'(9).

PROOF. Suppose first that H((, z) satisfies (a), (b), (c) and (1.8). Let u be a
measure on S orthogonal to polynomials. Fix ¢ € C1(S), and let ® € A(B) be as
n (1.8). Since polynomials are dense in A(B), [ ® du = 0. Hence by (1.8),

/S<l5(z)d,u(z) [; (c/SH(g,z) D (0) /\W(C)) du(2)

/s (C /5 H(, ZW@) 36(¢) Aw(C)

- 9LKM05w0Aw«>

so that (1.14) holds. The application of Fubini’s theorem is justified by (1.9).
Next, suppose that (1.14) holds, for H satisfying (a), (b) and (c). Choose a
measure i on S orthogonal to polynomials. Fix a function ¢ € C'(S), and define

¢@)=Md4f[¥ﬂ¢@5MOAw@)

By Lemma 1.1, ® is continuous on S, and

L¢www>= /¢ Jdu(2 r/(/Ha Japu(2 )%Awo

_ /¢@mm@—c/Kmoém0Awm
S S

by (1.14). Since this holds for all p orthogonal to polynomials, ® € A(B), and so

(1.8) follows. O
In 1977, in [4] G. Henkin introduced the kernel
Gz — Gz
1.15 H =, (, S

where <, > denotes the Hermitian inner product < z,( >= 21(; + 22(s, and proved
the formula (1.14) using this kernel. It is easy to check that H satisfies properties
(a), (b) and (c) above. Formula (1.14) on S is actually very special case of a class
of general integral formulae on smooth convex domains established in [4]. In her
thesis [5], H.P. Lee gave an elementary proof of Henkin’s formula for S; the paper
[8] of Varopoulous also contains an exposition of Henkin’s results on the sphere.
For applications of Henkin’s formula to rational approximation, see the paper [6]
of Lee and Wermer.

In this paper, we shall

1. give a direct proof of (1.8), using Henkin’s kernel (1.15);
2. give a formula for ®, in terms of ¢;

3. deduce an approximation result (Theorem 4.1) from (1.8).
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2. A Cauchy-Green Formula using Henkin’s Kernel

With H as in (1.15) and ¢ € C'(S) as in section 1 put
K() = [ (62090 nw(0)
Js

For a € int(A), put r = /1 — |a|? and denote by 7, the circle zo = r7, |7| = 1 in
the zs-plane.

LeEMMA 2.1. Fiza € A. Forn=0,1,2,... we have, putting z = (a, z2),

(2.1) / K(z)z3 dzo = 47r2/ ¢(2)z5 dzo
Ya Ya

PROOF.

[ Kaztan = | ( M%(ow(o) o3 des
Y 7 YVa

Js |1 - (IG - 22(2\2
(GirT — Ga)r" i dr —
/. (/ TG —r7G)(1—aG - rr<2>> 0910 nel)

We denote the inner integral by I(¢). Multiplying both numerator and denom-
inator of the integrand by 7, we get

a

(Gir = Gear)r™t T dr

0= /T—l 7“(2 [i - T] (1—ad) [T = ]

r¢a 1—-acy

Let

Note that 7175 = 1. We have

rGe* =1 —ad|?

(1= la®) (1~ [G)?) — 11— aG )
1—lal* =[G + lal[|G ) = 1= al*|G ) + aG + al
~(la]* + |G ” — a¢y — aly)

= —la—G)?
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It follows that |r(s|? < |1 —a¢;|? unless a = (4, and so || < 1, and |r| > 1,
for (1 # a. The Residue Theorem gives

L.[(C) _ - (1]“*(2717'2 -ITn+1Tn
2w _TC2(%;] - 7)1 - flC1)J
_ Gf*(ﬂl(f%gl) -| r”“ n
G (E - (1 - ag) |
_ (1—aG)Gr — (Ga)re -I,r,'rH—l n
ré (‘1 [LCl —r¢)(1—ak) J
 [ar-aapr—alg e s
L -aG - r2e 1*aC1
(@] e
- LG =aP ] 1-aG

- (75 () (=)
le(l ].7(714.1 ].7(714.1

B T.2n+2<én ( 1 )
(1 -aG)"tt \G—a
Thus

r2n+2<‘n < 1 >
2.2 I(¢) = 2mi - 2
(2.2 Q) =2mi Ty (e
Let S, be the part of S lying over the region

{IG —al = e} n{lGI <1}
in the (;-plane. Let T, denote the boundary of S.. We claim that

(23) [ K az = =tim | [ 076000

To establish the claim, note that

/K(Z)Z;LdZQ = /ngﬁ/\w-l
v S

7 Ya

e—0 S,

= lim / OpAw-T
= lim [ d(¢ wl)
e—0 S.

since [ is holomorphic on S, for € > 0. By Stokes’ Theorem, the latter integral
proving the claim.

equals
— / o wl
JT.
Note that T, is the torus
G=a+e, =+/1-]0Pe™, 0<6,¢<2m
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On T, we have the following relations:

¢(¢) = ¢(a,re’) + O(e);
C;l _ ,r.neinzp _ Tneinw
(1 —ag; )+t - (1 — Jaf2)n+T + O(e) =
d¢, = iee??df, dé = —iee " db;
_ —GdG — GdG o

2y/1—|Gi[?

+ O(e);

T2n+2
dGs L [GPedy = ire™di + O(e);
1 1

G—a el
Using this information together with (2.2) and (2.3) we obtain

n __1; _ - 2n+2 C; 1
[ K =tim |2 [ o0rm g s

For fixed €, we rewrite the expression in brackets as

—2mi / d(a, re™)rme™Vidd Aire' dip + O(e)
J,

Letting € go to zero we obtain

2w 2w
K@) dza = 20 [ db [ ofa,re™)(re®) ire®) v
Ja Jo Jo
= 47T2/ d(2)2z3 dzo
Ya
This completes the proof of (2.1) and Lemma 2.1. O

Next, we define an operator T on C'(S) as follows:
(2.4) (To)(2) = 47°¢(2) — K(2), forz€ S,¢ € C'(S)

Letting X denote the tangential Cauchy-Riemann operator on S as in section 1,
using (1.11) we can write

Té = dn’p - / H(C,2) (X6)(Q)da(C)

LEMMA 2.2, Fiz ¢ € CY(S). Let L be a complex line in C2. Then the restric-
tion of T(¢) to LN S extends analytically to L N B.

PRrROOF. Lemma 2.1 gives us, for each a € int(A), that

(2.5) / (TP)(z)z5 dzo =0, n=0,1,2,...

Note that v, = L, NS, where L, is the line {z; = a}. Then (2.5) implies
that T'¢ extends analytically to the disk L, N B. Using the unitary invariance of
H,o, and X, it is not hard to check that for all ¢ € C*(S)

(2.6) (Tp)oU =T(¢poU)

Fix a complex line L. Let N denote the complex line passing through the origin
which is orthogonal to L, and let z° denote the intersection point N N L. Write
L ={z°+(t |t € C} for some unit vector ¢. If U is a unitary transformation with
Ues = (, where es = (0,1) then U maps the line {22 = 0} to N, and maps some
point (a,0) to z°. Then U((a,0) + #(0,1)) = 2° 4+ ¢¢, for all t € C. So U maps

3
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the line L, to L and maps the disk L, N B to LN B. By (2.6), T¢ |, g extends
analytically to the disk LN B if and only if (T'¢)oU | ¢ extends to L, N B. This
last is true by (2.5), as we have noted earlier, and so the proof is complete. [l

By Lemma 1.1, since H satisfies properties (a), (b) and (c) of section 1, K
and thus T¢ are continuous on S. By Lemma 2.2, T'¢ has the “one-dimensional
extension property” as defined by Stout in [7], p. 105. A theorem of Agranovskii
and Val’skii [1] then gives that T'¢ lies in the ball algebra A(B). Putting ® = T'(¢),
we have arrived at

THROREM 2.3. Let ¢ € C'(S). Then there exists ® € A(B) such that

4m2(z) = B(z) + / H(C,2) 36(C) A w(Q)

where H is Henkin’s kernel
G2 — Gz
H -2 @ -
3. The Cauchy-Green formula and the Cauchy transform

In this section we identify the ball algebra function ® appearing in Theorem
2.3 as a certain principal value of the Cauchy transform of ¢. The Cauchy kernel

for B is
1

C=0= Gy

For z € S we set
N(z)={CeS:|<(z>|>1—¢€}
and we denote the boundary of N,(z) by [c(2).

THEOREM 3.1. Fiz ¢ € C1(S). If ® is as in Theorem 2.3, then for z € S,

®(z) = 2lim $(Q)C(z,¢) do(C)

e—0 . S\NF(Z)

REMARK 3.2. Since C(z,-) ¢ L'(do), it is not immediate that the limit in
Theorem 3.1 exists.

PROOF. As in sections 1 and 2, set

K(z) = /SH(C:Z) 9¢(Q) Aw(C) = lim H(¢,2) 9(C) Aw(C)

e—0 S\NF(Z)
For € > 0 fixed,

/ H(C,2) B9(C) Awl(C) :/ dIH(C, 2)6(C) A w(C)]
S\N(z) S\Ne(z)
- / BH(C. 2)) A $(0) Aw(Q)
JS\Nc(z)

H(C, ) 6(0) A w(Q)

JTe(2)

9 / (XH)((, 2) $(C) do(()
S\N.(z)
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by Stokes’ theorem, if T'.(z) is oriented as the boundary of S\ N.(z). We have also
used equation (1.11) from section 1. A computation shows (differentiation is in the
¢ variable)

(XH)((,2) = =C(2,0)
so that

K(z) = lim H((, =2 -2 C(( =z ()do (¢
[/ (¢,2) $(C) A w(C) '/‘;\N() (¢, 2) $(0)da(C)

e—0 |,

Since
B(z) = 4’ ¢(2) - K(2)
by Theorem 2.3, the proof will be complete if we can show that

(3.1) lim H(¢,2) 6(¢) Aw(C) = 4n?¢(z)

e—0 Fe(z)

To establish (3.1), choose a unitary map U with Ue; = z. Then for fixed € > 0,

/ H(G,2) (0) A (C)Z'/F()H(n,el)(¢°U)(n)/\w(n)

The torus Ff(el) = {n : |m| = 1 — €}, oriented as the boundary of S\ N.(e;), is
parametrized by

m=(1- f)ewl: N = ree’®, 0<6:,6, <2r
where
re=+/1—(1-¢)
Then on T'.(e1),
wn) =dm Adns = —(1 — €)r.ere’®2dh; A db,,

(o U)n) = (¢0U)(e,0) + Oe),

and

frfe’m?
H(TI: 1) |1—(1—6)6201|2

which gives

/ H(C,2) 6(0) A w(C) / Hn.er) (60 U)(n) Awin)
Te(2)

2” ree’t (¢ o U)(e™,0)
(3.2) - / |1_ ey [+ L
where
21 2w
|| <C/ / T e

for some C > 0. An application of the Poisson 1ntegral formula shows that the first
integral in (3.2) converges to 472 (¢oU)(e;) = 4n2¢(z) as € — 0, while lim,_,o I, = 0.
This completes the proof. ([
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4. An Approximation Theorem
Fix ¢ € C'(S). The quantity
dist(¢, A(B)) = inf{|l¢ — g[[ : g € A(B)}

where || - || is the uniform norm on S measures how closely ¢ can be approximated
by polynomials on S.

THEOREM 4.1. There exists C > 0 so that for all € C'(S),
dist(¢, A(B)) < C[[X ¢l
PRroOF. Let ||H||; denote the L' — do norm of Henkin’s kernel H (-, z) (which

is independent of z € S). By the representation in Theorem 2.3, there exists
® € A(B) so that for z € S,

1x26(2) 02 = | [ H(E) B0 Al

)| H<<,z)<X¢>(oda<o‘
S
Sl H || X g

from which the result follows. O

IN
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