Boundary Behavior of some Cauchy Transforms

John T. Anderson and Joseph A. Cima

Abstract

Let Ω be a relatively open subset of the unit sphere $\partial \mathbb{B}_n = \{z \in \mathbb{C}^n : ||z|| = 1\}$, with smooth boundary Γ relative to $\partial \mathbb{B}_n$, and let χ_{Ω} be the characteristic function of Ω . Let $E(\Gamma)$ denote the set of points $z \in \Gamma$ such that the manifold Γ is not generic at z. We show that if $f \in C^1(\partial \mathbb{B}_n)$ the Cauchy transform of $f\chi_{\Omega}$ extends continuously to each point of $\partial \mathbb{B}_n \setminus E(\Gamma)$.

§1. Introduction

Let \mathbb{B}_n be the open unit ball in \mathbb{C}^n , $\partial \mathbb{B}_n$ its boundary, and σ the standard invariant 2n-1 dimensional measure on $\partial \mathbb{B}_n$, normalized so that $\sigma(\mathbb{B}_n) = 1$. For $f \in L^1(d\sigma)$, the Cauchy transform of f is a function holomorphic in \mathbb{B}_n , defined by

$$\mathcal{C}[f](z) := \int_{\partial \mathbb{B}_n} f(\zeta) C(z,\zeta) d\sigma(\zeta), \ \ z \in \mathbb{B}_n$$

where

$$C(z,\zeta) := rac{1}{(1-\langle z,\zeta
angle)^n}$$

and $\langle z,\zeta\rangle:=\sum_{j=1}^n z_j\overline{\zeta}_j$ is the standard Hermitian inner product. Under mild smoothness assumptions on f (say if f satisfies a Hölder condition with exponent α , $0<\alpha<1$ on $\partial\mathbb{B}_n$ - see [2], Theorems 6.4.9 and 6.4.10) $\mathcal{C}[f]$ is known to extend continuously to the closed ball. Also, if f is the restriction to $\partial\mathbb{B}_n$ of a function F in the ball algebra $A(\mathbb{B}_n)$ (the space of functions holomorphic on \mathbb{B}_n and continuous on its closure), then $\mathcal{C}[f]=F$, and so $\mathcal{C}[f]$ extends to be continuous on the closed ball.

In this paper we consider the boundary behavior of Cauchy transforms of certain bounded discontinuous functions. Suppose Ω is a relatively open subset of $\partial \mathbb{B}_n$ with smooth boundary (relative to $\partial \mathbb{B}_n$) Γ , let χ_{Ω} be the characteristic function of Ω , and suppose $f \in C^1(\mathbb{B}_n)$. If $z^0 \in \partial \mathbb{B}_n \setminus \Omega$, it is clear that $\mathcal{C}[f\chi_{\Omega}]$ extends holomorphically to a neighborhood of z^0 , since the Cauchy kernel $C(z,\zeta)$ is holomorphic as a function of z near z^0 for each $\zeta \in \Omega$. The fact that $\mathcal{C}[f] = \mathcal{C}[f\chi_{\partial \mathbb{B}_n \setminus \Omega}] + \mathcal{C}[f\chi_{\Omega}]$ then implies that $\mathcal{C}[\chi_{\Omega}](z)$ extends continuously to $\overline{\mathbb{B}_n} \setminus \Gamma$.

When n=1, this is all that can be said: if Ω is the arc $\{e^{i\theta}: \alpha < \theta < \beta\}$ for some fixed α, β , and $f \equiv 1$, then

$$\mathcal{C}[\chi_{\Omega}](z) = \frac{1}{2\pi} \int_{\alpha}^{\beta} \frac{1}{1 - ze^{-i\theta}} \ d\theta = \frac{1}{2\pi} \left[i \log \left(\frac{1 - ze^{-i\alpha}}{1 - ze^{-i\beta}} \right) + \beta - \alpha \right], \quad |z| < 1.$$

Thus $\mathcal{C}[\chi_{\Omega}](z)$ is unbounded as z approaches $\{e^{i\alpha}, e^{i\beta}\} = \Gamma$. However, when n > 1, $\mathcal{C}[\chi_{\Omega}](z)$ may possess limits as $z \to z_0$ for certain points $z_0 \in \Gamma$. Consider

$$\Omega = \{(\zeta_1, \zeta_2) \in \partial \mathbb{B}_2 : \Re \zeta_1 > 0\},\$$

whose boundary is the two-sphere

$$\Gamma = \{(\zeta_1, \zeta_2) : \Re \zeta_1 = 0, (\Im \zeta_1)^2 + |z_2|^2 = 1\}$$

A computation reveals that $\mathcal{C}[\chi_{\Omega}](z_1, z_2)$ is a function of z_1 alone, that

$$C[\chi_{\Omega}](z_1) = \frac{i}{\pi} \cdot \frac{1 - z_1^2}{z_1^2} \cdot \log\left(\frac{1 - iz_1}{1 + iz_1}\right) + \frac{1}{\pi z_1} + \frac{1}{2}, \quad |z_1| < 1, z_1 \neq 0$$
(1)

and that the function defined by the right-hand side of (1) has a removable singularity at $z_1 = 0$. It is apparent that $\mathcal{C}[\chi_{\Omega}](z)$ possesses a limit as $z \in \mathbb{B}_2$ approaches every point of $\partial \mathbb{B}_2$ except $(\pm i, 0)$. These are precisely the two points in Γ where the tangent space to Γ is a complex line.

It turns out that the phenomenon exhibited in the last example is a general one. If Γ is a smooth real submanifold of \mathbb{C}^n , we let $E(\Gamma)$ be the set of points $p \in \Gamma$ where the tangent space to Γ is generic (see section 2 for the definition).

Theorem 1. Let Ω be a relatively open subset of $\partial \mathbb{B}_n$ whose boundary Γ (relative to $\partial \mathbb{B}_n$) is a submanifold of $\partial \mathbb{B}_n$ of class C^2 . If $f \in C^1(\partial \mathbb{B}_n)$, then $C[f\chi_{\Omega}]$ extends continuously to $\partial \mathbb{B}_2 \setminus E(\Gamma)$.

In section 2 we prove (with Γ as in Theorem 1) that the 2n-2-dimensional Hausdorff measure of $E(\Gamma)$ is zero. The proof of Theorem 1 is given in section 3. Note that the set Ω in the theorem need not be connected, so that the result holds for finite unions of smoothly bounded connected domains on the sphere with disjoint closures. In section 4 we give an example of a compact set $Y \subset \partial \mathbb{B}_2$ with empty interior and positive σ -measure such that such that $\mathcal{C}[\chi_Y]$ extends continuously to the closed ball.

The first author encountered integrals of the form $C[f\chi_{\Omega}]$ in working on questions of rational approximation on subsets of $\partial \mathbb{B}_2$ with John Wermer, whom he thanks for enlightening discussions.

§2 The measure of $E(\Gamma)$.

Let M be a smooth real k-dimensional submanifold of \mathbb{C}^n . Assume $k \geq n$. Near a given $p \in M$, M may be defined as the common zero set of 2n-k smooth real-valued functions $\rho_1, \ldots, \rho_{2n-k}$ with $d\rho_1, \ldots, d\rho_{2n-k}$ linearly independent over \mathbb{R} . Let r(p) be the rank (over \mathbb{C}) of the matrix $((\partial \rho_i(p)/\partial \overline{z}_j))$. Then the dimension (over \mathbb{C}) of the maximal complex subspace $\mathcal{T}_p M$ of the real tangent space $T_p M$ is n-r(p). When this rank is maximal (i.e., r(p)=2n-k, in which case $\mathcal{T}_p M$ has dimension k-n), we say that M is generic at p. Let E(M) be the set of non-generic points of M.

Lemma 2.1 Let $M = \Gamma$ be a C^2 -smooth 2n-2 dimensional submanifold of a strictly pseudoconvex hypersurface Σ in \mathbb{C}^n . Then the 2n-2-dimensional Hausdorff measure of $E(\Gamma)$ is zero.

Proof. The proof is virtually identical to that given in [AI] for the case n = 2. Fix $p \in \Gamma$. After a linear change of coordinates in \mathbb{C}^n we may choose a neighborhood U of p so that

$$\Gamma \cap U = \{(z', h(z') : z' \in U'\}$$

where $z' = (z_1, \ldots, z_{n-1})$, U' is a neighborhood of the origin in \mathbb{C}^{n-1} , and h is a smooth complex-valued function on U'. Set

$$X = \{z' \in U' : \frac{\partial h}{\partial \overline{z}_j}(z') = 0, \forall j = 1, \dots, n-1\}$$

Using the defining functions $\Re[z_n - h(z')], \Im[z_n - h(z')]$ for Γ we see that

$$E(\Gamma) \cap U = \{(z', h(z')) : z' \in X\}.$$

If we show that X has 2n-2 dimensional Lebesgue measure zero (as a subset of \mathbb{R}^{2n-2}), then $E(\Gamma) \cap U$ has 2n-2 Hausdorff measure zero. Since p was arbitrary, Γ can be then be covered by countably many sets of 2n-2 Hausdorff measure zero, and the proof will be complete.

Assume to the contrary that X has positive 2n-2 Lebesgue measure. Lemma 3.2 of [AI] implies that

$$\frac{\partial^2 h}{\partial \overline{z}_i \partial z_k}(z') = 0, \forall j, k = 1, \dots, n - 1$$
 (2)

at almost all points z' in X. We may therefore assume that (2) holds at the origin 0' in \mathbb{C}^{n-1} and that h(0') = 0. Since $\mathbf{0} := (0', 0) \in E(\Gamma)$, $\dim_{\mathbb{C}} \mathcal{T}_0 \Gamma = n - 1$, and $\mathcal{T}_0 \Gamma = \mathcal{T}_0 \Sigma$. By another linear transformation of \mathbb{C}^n we may assume

$$\mathcal{T}_{\mathbf{0}}\Sigma = \{ (z', 0) : z' \in \mathbb{C}^{n-1} \}$$

$$\tag{3}$$

and thus

$$h(0') = 0$$
 and $\frac{\partial h}{\partial z_j}(0') = \frac{\partial h}{\partial \overline{z}_j}(0') = 0, \ j = 1, \dots, n-1.$ (4)

By the strict pseudoconvexity of Σ , we may choose a defining function ρ for Σ near $\mathbf{0}$ so that $\rho(\mathbf{0}) = 0, d\rho(\mathbf{0}) \neq 0$ and

$$\sum_{j,k=1}^{n} \frac{\partial^{2} \rho}{\partial \overline{z}_{j} \partial z_{k}}(\mathbf{0}) a_{j} \overline{a}_{k} > 0$$

whenever $\sum_{j=1}^n a_j \partial \rho / \partial \overline{z}_j(\mathbf{0}) = 0$. In particular, since (3) implies $\partial \rho / \partial \overline{z}_1(\mathbf{0}) = 0$, we must have

$$\frac{\partial^2 \rho}{\partial \overline{z}_1 \partial z_1}(\mathbf{0}) > 0. \tag{5}$$

However, if we differentiate the identity

$$\rho(z',h(z')) \equiv 0$$

with respect to z_1 and then \overline{z}_1 , and use (4) and (2), we find $\partial^2 \rho / \partial \overline{z}_1 \partial z_1(\mathbf{0}) = 0$, contradicting (5). This completes the proof. \square

§3 Proof of Theorem 1

The standard Euclidean norm in \mathbb{C}^n will be denoted by ||z||, and the ball of radius r and center z will be denoted by B(z,r). We make use of the following elementary lemma, whose proof we omit.

Lemma 3.1 Suppose $g \in C^1(\mathbb{B}_n)$, $z^0 \in \partial \mathbb{B}_n$, and that there exist a neighborhood N of z^0 in $\partial \mathbb{B}_n$, $0 < t^* < 1$, and a function $\psi \in L^1([t^*, 1])$ such that

$$\left| \frac{\partial}{\partial t} g(tz) \right| \le \psi(t)$$

for all $z \in N$ and all $t, t^* < t < 1$. Then $g^*(z) := \lim_{t \to 1^-} g(tz)$ exists for all $z \in N$, and the extension of g defined by

$$\tilde{g}(\zeta) := \left\{ egin{array}{ll} g(z) & z \in \mathbb{B}_n, \\ g^*(z) & z \in N \end{array} \right.$$

is continuous at z^0 .

Now let Ω , Γ , and f be as in Theorem 1. By the remarks in the introduction, $\mathcal{C}[f\chi_{\Omega}]$ extends continuously to each point of $\mathbb{B}_n \setminus \Gamma$. Therefore to prove Theorem 1 it suffices to show that $\mathcal{C}[f\chi_{\Omega}]$ extends to be continuous at z^0 for each $z^0 \in \Gamma \setminus E(\Gamma)$. To do this we will apply Lemma 3.1.

Fix $z^0 \in \Gamma \setminus E(\Gamma)$. We claim that there exist a neighborhood U of z^0 in \mathbb{B}_n and a vector field

$$L_{\zeta} = \sum_{j=1}^{n} \alpha_j \frac{\partial}{\partial \bar{\zeta}_j} + \beta_j \frac{\partial}{\partial \zeta_j}$$

with coefficients $\alpha_j, \beta_j \in C^1(U)$ so that

$$L_{\zeta}(C(tz,\zeta)) = t \frac{\partial}{\partial t} C(tz,\zeta), \forall \zeta, z, t,$$
(6)

$$L_{\zeta} \in T_{\zeta} \partial \mathbb{B}_n \otimes \mathbb{C}, \quad \forall \zeta \in U$$
 (7)

and

$$L_{\zeta} \in T_{\zeta} \Gamma \otimes \mathbb{C}, \quad \forall \zeta \in U \cap \Gamma.$$
 (8)

In fact, (6) holds with $\alpha_j = \bar{\zeta}_j$, by a routine computation. Let $\rho_1(\zeta) = \sum_{j=1}^n |\zeta_j|^2 - 1$ be the defining function for \mathbb{B}_n . We may choose a neighborhood U of z^0 and a real-valued function $\rho_2 \in C^2(U)$ such that

$$\Omega \cap U = \{ \zeta \in U : \rho_2(\zeta) < 0 \}$$

and $d\rho_1 \wedge d\rho_2 \neq 0$ on U. Then (7) and (8) will be satisfied provided

$$L_{\zeta}(\rho_1) = L_{\zeta}(\rho_2) \tag{9}$$

for all $\zeta \in U$. The condition that Γ is generic at z^0 implies that (shrinking U if necessary) $\partial \rho_1 \wedge \partial \rho_2 \neq 0$ on U, which in turn implies that the system (9) may be solved for the coefficients $\beta_i \in C^1(U)$ and establishes the claim.

Now assume that the neighborhood U and L_{ζ} are chosen to satisfy (6), (7) and (8). Choose $\eta > 0$ so that $B(z^0, 2\eta) \subset U$, and choose $\phi \in C^{\infty}(\partial \mathbb{B}_n)$ such that $\phi \equiv 1$ on $B(z^0, \eta/2)$ and $\phi \equiv 0$ on $\partial \mathbb{B}_n \setminus B(z^0, \eta)$. For 0 < t < 1,

$$\frac{\partial}{\partial t}\mathcal{C}[f\chi_{\Omega}](tz) = \int_{\Omega} f(\zeta) \frac{\partial}{\partial t} C(tz,\zeta) \ d\sigma(\zeta) = I_1(tz) + I_2(tz)$$

where

$$I_1(tz) = \int_{\Omega} (1 - \phi(\zeta)) f(\zeta) \frac{\partial}{\partial t} C(tz, \zeta) \ d\sigma(\zeta) = \int_{\Omega \setminus B(z^0, \eta/2)} (1 - \phi(\zeta)) f(\zeta) \frac{\partial}{\partial t} C(tz, \zeta) \ d\sigma(\zeta).$$

and

$$I_2(tz) = \int_{\Omega} \phi(\zeta) f(\zeta) \frac{\partial}{\partial t} C(tz, \zeta) \ d\sigma(\zeta) = \frac{1}{t} \int_{\Omega \cap B(z^0, 2\eta)} \phi(\zeta) f(\zeta) L_{\zeta} C(tz, \zeta) \ d\sigma(\zeta).$$

Let $N = B(z^0, \eta/4)$. The inner product $\langle tz, \zeta \rangle$ is bounded away from 1 for $z \in N$, $\zeta \in \Omega \setminus B(z^0, \eta/2)$ and t < 1, and so there exists a constant K_1 so that

$$|I_1(tz)| < K_1 \tag{10}$$

for all $t < 1, \zeta \in N$. To estimate I_2 we integrate by parts. Using properties (ii) and (iii) of L_{ζ} and the fact that the integrand vanishes outside $B(z^0, \eta)$, we obtain

$$I_2(tz) = rac{1}{t} \int_{\Omega \cap B(z^0, 2\eta)} h(\zeta) C(tz, \zeta) \ d\sigma(\zeta)$$

for some continuous function h vanishing outside $B(z^0, \eta)$. Thus

$$|I_2(tz)| \le \frac{\|h\|_{\infty}}{t} \int_{\partial \mathbb{B}_n} |C(tz,\zeta)| \ d\sigma(\zeta).$$

The unitary invariance of C and $d\sigma$ implies that the latter integral is independent of z, and so if $e_1 = (1, 0, \dots, 0)$, we have

$$\int_{\partial \mathbb{B}_n} |C(tz,\zeta)| \ d\sigma(\zeta) = \int_{\partial \mathbb{B}_n} |C(te_1,\zeta)| \ d\sigma(\zeta) = \int_{\partial \mathbb{B}_n} |1 - t\bar{\zeta}_1|^{-n} \ d\sigma(\zeta)$$

Using formula 1.4.5 (2) of [2],

$$\int_{\partial \mathbb{B}_n} |1 - t\bar{\zeta}_1|^{-n} \ d\sigma(\zeta) = \frac{n-1}{\pi} \int_{\mathbb{D}} \frac{(1 - |\lambda|^2)^{n-2}}{|1 - t\bar{\lambda}|^n} \ dm(\lambda)$$

where \mathbb{D} is the unit disk in the plane and m is normalized Lebesgue measure on \mathbb{D} . Let $\mathbb{D}^+ = \{\lambda \in \mathbb{D} : \Re \lambda > 0\}$. Since

$$\int_{\mathbb{D}\setminus\mathbb{D}^+}rac{(1-|\lambda|^2)^{n-2}}{|1-tar{\lambda}|^n}\,dm(\lambda)$$

is bounded independently of t, 0 < t < 1, it suffices to estimate

$$\int_{\mathbb{D}^+} rac{(1-|\lambda|^2)^{n-2}}{|1-tar{\lambda}|^n} \ dm(\lambda).$$

It is easy to check that if 1/2 < t < 1, $|1 - \bar{\lambda}|^2 \le 4|1 - t\bar{\lambda}|^2$ for $\lambda \in \mathbb{D}^+$, and therefore

$$\frac{(1-|\lambda|^2)^{n-2}}{|1-t\bar{\lambda}|^n} \leq \frac{(1-|\lambda|)^{n-2}}{|1-t\bar{\lambda}|^n} \leq \frac{|1-\bar{\lambda}|^{n-2}}{|1-t\bar{\lambda}|^{n-2}} \cdot \frac{1}{|1-t\bar{\lambda}|^2} \leq 2^{n-2} \frac{1}{|1-t\bar{\lambda}|^2}$$

It follows that, for 1/2 < t < 1,

$$\int_{\mathbb{D}^+} \frac{(1-|\lambda|^2)^{n-2}}{|1-t\bar{\lambda}|^n} \, dm(\lambda) \leq 2^{n-2} \int_{\mathbb{D}^+} \frac{1}{|1-t\bar{\lambda}|^2} \, dm(\lambda) \leq 2^{n-2} \int_{\mathbb{D}} \frac{1}{|1-t\bar{\lambda}|^2} \, dm(\lambda).$$

An explicit integration shows that the latter integral is $O(|\log(1-t)|)$ as $t \to 1^-$. Therefore there exist constants K_2, K_3 so that

$$|I_2(tz)| \le K_2 + K_3|\log(1-t)| \tag{11}$$

for all t, 1/2 < t < 1 and $\zeta \in N$. Combining (10) and (11) we see that the hypotheses of Lemma 3.1 hold for $g = \mathcal{C}[f\chi_{\Omega}]$, $t^* = 1/2$, and $\psi(t) = K_1 + K_2 + K_3|\log(1-t)|$. This completes the proof of Theorem 1. \square

§4 An Example.

If Γ is generic at each point $p \in \Gamma$, Theorem 1 implies that $\mathcal{C}[f\chi_{\Omega}]$ extends continuously to the closed ball when f is smooth. Consider, for example,

$$\Omega := \{ \zeta = (\zeta_1, \zeta_2) \in \partial \mathbb{B}_n : \zeta_1 \in D(a, r) \}$$

where D(a,r) is the disk $\{\lambda \in \mathbb{C} : |\lambda - a| = r\}$, with a,r chosen so that $\overline{D(a,r)} \subset \mathbb{D}$. Then $\Gamma = \{\zeta = (\zeta_1, \zeta_2) \in \partial \mathbb{B}_n : |\zeta_1 - a| = r\}$ is a totally real torus. Take $f \equiv 1$. A computation gives

$$C[\chi_{\Omega}](z_1, z_2) = \frac{r^2}{(1 - az_1)^2}$$
 (12)

Now choose disks as in the construction of a "Swiss cheese": fix R < 1, let $D_0 = D(0, R)$, and choose a_j, r_j so that if $D_j := D(a_j, r_j)$ then (i) $\overline{D_j} \subset D_0$; (ii) $D_j \cap D_k = \emptyset$ if $j \neq k$; (iii) $\sum_{j=1}^{\infty} r_j < \infty$ and (iv) $X := \overline{D_0} \setminus \bigcup_{j=1}^{\infty} D_j$ has empty interior. It is known that then X has positive two-dimensional measure. If

$$Y := \{ \zeta = (\zeta_1, \zeta_2) \in \partial \mathbb{B}_n : \zeta_1 \in X \}$$

then Y is a compact set with empty interior and $\sigma(Y) > 0$. Using (12) we see that

$$\mathcal{C}[\chi_Y](z_1, z_2) = R^2 - \sum_{j=1}^{\infty} \frac{r_j^2}{(1 - a_j z_1)^2},$$

the sum converging uniformly on the closed ball.

References

- [1] J. Anderson and A. Izzo, A Peak Point Theorem for Uniform Algebras Generated by Smooth Functions On a Two-Manifold, Bull. London Math. Soc. 33 (2001), 187–195.
- [2] W. Rudin, Function Theory on the Unit Ball of \mathbb{C}^n , Springer, Berlin 1980.

John T. Anderson Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA 01610-2395 email: anderson@mathcs.holycross.edu

Joseph A. Cima Department of Mathematics University of North Carolina Chapel Hill, NC 27599-3250 email: cima@email.unc.edu