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Abstract

Let Q be a relatively open subset of the unit sphere 0B, = {z € C" : ||z|| = 1}, with smooth
boundary T relative to OB,,, and let xqo be the characteristic function of Q. Let E(T') denote the
set of points z € [ such that the manifold T is not generic at 2. We show that if f € C'(9B,,)
the Cauchy transform of fxq extends continuously to each point of B, \ E(T).

§1. Introduction

Let B, be the open unit ball in C*, 0B, its boundary, and o the standard invariant 2n — 1
dimensional measure on 0B, , normalized so that o(B,) = 1. For f € L'(do), the Cauchy transform
of f is a function holomorphic in B,,, defined by

Clf1(z) = /6 00 Qdo(0), = < By

where
1

(1= (="

and (z,() := Z?Zl zjzj is the standard Hermitian inner product. Under mild smoothness assump-
tions on f (say if f satisfies a Holder condition with exponent o, 0 < a < 1 on 0B, - see [2],
Theorems 6.4.9 and 6.4.10) C[f] is known to extend continuously to the closed ball. Also, if f is the
restriction to 0B, of a function F' in the ball algebra A(B,) (the space of functions holomorphic

on B, and continuous on its closure), then C[f] = F, and so C[f] extends to be continuous on the
closed ball.

C(Z7C) =

In this paper we consider the boundary behavior of Cauchy transforms of certain bounded discon-
tinuous functions. Suppose 2 is a relatively open subset of 9B, with smooth boundary (relative to
OB,) T, let xq be the characteristic function of 2, and suppose f € C'(B,). If 2° € 0B, \ Q, it is
clear that C[fxq] extends holomorphically to a neighborhood of 2°, since the Cauchy kernel C(z, ()
is holomorphic as a function of z near 2° for each ¢ € Q. The fact that C[f] = C[fxsp, \a) +C[fxal
then implies that C[xq](z) extends continuously to B, \ T.

When n = 1, this is all that can be said: if © is the arc {€? : @ < 6 < 8} for some fixed a, 3, and
f =1, then
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Thus C[xa](z) is unbounded as z approaches {e'®, ¢’} = T'. However, when n > 1, C[xq](z) may
possess limits as z — z for certain points zy € I'. Consider

0 = {(¢1,¢2) € 0By : R¢ > 0},



whose boundary is the two-sphere

T ={(¢1,¢2) : VG = 0,(SC)? + |zf* = 1}

A computation reveals that C[xq](z1, z2) is a function of z; alone, that

i 1— 22 1—iz 1 1
C - . 1.] — 4, <1, 0 1
bxal(er) = 2+ = °g<1+z~z1>+m+2 o1l < 1,21 # ()

and that the function defined by the right-hand side of (1) has a removable singularity at z; = 0. It
is apparent that C[xq|(z) possesses a limit as z € By approaches every point of 0By except (%1, 0).
These are precisely the two points in I' where the tangent space to I' is a complex line.

It turns out that the phenomenon exhibited in the last example is a general one. If I' is a smooth
real submanifold of C", we let E(I') be the set of points p € T' where the tangent space to I is
generic (see section 2 for the definition).

Theorem 1. Let Q be a relatively open subset of 0B, whose boundary T (relative to 0B, ) is a
submanifold of OB, of class C2. If f € C*(0By,), then C[fxq)] extends continuously to OBy \ E(T).

In section 2 we prove (with I' as in Theorem 1) that the 2n — 2-dimensional Hausdorff measure of
E(T') is zero. The proof of Theorem 1 is given in section 3. Note that the set  in the theorem need
not be connected, so that the result holds for finite unions of smoothly bounded connected domains
on the sphere with disjoint closures. In section 4 we give an example of a compact set Y C dBs
with empty interior and positive o-measure such that such that C[xy] extends continuously to the
closed ball.

The first author encountered integrals of the form C[fxq] in working on questions of rational
approximation on subsets of 0By with John Wermer, whom he thanks for enlightening discussions.

§2 The measure of E(I).

Let M be a smooth real k-dimensional submanifold of C*. Assume k& > n. Near a given p € M,
M may be defined as the common zero set of 2n — k smooth real-valued functions p1, ..., pon—k
with dpi,...,dpon—k linearly independent over R. Let r(p) be the rank (over C) of the matrix
((Opi(p)/0%;)). Then the dimension (over C) of the maximal complex subspace T,M of the real
tangent space T, M is n —r(p). When this rank is maximal (i.e., 7(p) = 2n — k, in which case T, M
has dimension k — n), we say that M is generic at p. Let E(M) be the set of non-generic points of
M.

Lemma 2.1 Let M =T be a C?-smooth 2n —2 dimensional submanifold of a strictly pseudoconvex
hypersurface ¥ in C"*. Then the 2n — 2-dimensional Hausdorff measure of E(T) is zero.

Proof. The proof is virtually identical to that given in [AI] for the case n = 2. Fix p € I'. After a
linear change of coordinates in C"* we may choose a neighborhood U of p so that

INU ={(,h(?): 2 € U"}



where 2’ = (z1,-..,2,_1), U' is a neighborhood of the origin in C*~!, and h is a smooth complex-
valued function on U’. Set

Oh

X={/eU": 3z]()

=0,Vj=1,...,n—1}

Using the defining functions R[z, — h(2")], S[zn, — h(z")] for ' we see that
EM)NU = {(,h(")) : 2 € X}.

If we show that X has 2n — 2 dimensional Lebesgue measure zero (as a subset of R?"~2), then
E(T') NU has 2n — 2 Hausdorff measure zero. Since p was arbitrary, I' can be then be covered by
countably many sets of 2n — 2 Hausdorff measure zero, and the proof will be complete.

Assume to the contrary that X has positive 2n — 2 Lebesgue measure. Lemma 3.2 of [AI] implies
that
0%h
%jazk

(z)=0,Vj,k=1,...,n—1 (2)

at almost all points 2’ in X. We may therefore assume that (2) holds at the origin 0’ in C*~! and
that h(0') = 0. Since 0 := (0/,0) € E(T), dimcTol' = n — 1, and Tol' = ToX. By another linear
transformation of C" we may assume

ToX = {(#',0): 2 e C"1} (3)

and thus o o
' = (0 N=0,j=1,...,n—1. 4
h(0') = 0 and BzJ(O) azJ(O) 0, 7= (4)

By the strict pseudoconvexity of ¥, we may choose a defining function p for ¥ near 0 so that

p(0) = 0,dp(0) # 0 and
Z 8— sz 0)a;ay > 0

Jk=1

whenever } 77, a;0p/0%;(0) = 0. In particular, since (3) implies dp/0%1(0) = 0, we must have
?p

821621

0) > 0. (5)
However, if we differentiate the identity
p(7 h(z')) =0

with respect to z; and then Zj, and use (4) and (2), we find 8%p/0%1021(0) = 0, contradicting (5).
This completes the proof. [

§3 Proof of Theorem 1

The standard Euclidean norm in C* will be denoted by ||z||, and the ball of radius r and center z
will be denoted by B(z,7). We make use of the following elementary lemma, whose proof we omit.



Lemma 3.1 Suppose g € C'(B,,), 2° € OB, and that there exist a neighborhood N of 2° in OB,
0 < t* <1, and a function ¢ € L'([t*,1]) such that

2 glt2)| < (1)

for all z € N and all t,t* < t < 1. Then g*(z) := lim;_,,- g(tz) exists for all z € N, and the
extension of g defined by

_J 9(z) z€B,,
©={ 3 2

is continuous at 2°.

Now let ©, I, and f be as in Theorem 1. By the remarks in the introduction, C[fxq] extends
continuously to each point of B, \ I". Therefore to prove Theorem 1 it suffices to show that C[fxq]
extends to be continuous at 20 for each 20 € '\ E(T'). To do this we will apply Lemma 3.1.

Fix 2% € T'\ E(I'). We claim that there exist a neighborhood U of 2 in B, and a vector field
& 0 0
L, = i — + ﬂ_
¢ Jz::l J PR J a¢;

with coefficients a;, 3; € C'(U) so that

0
LC € Tcaan RC, V(eU (7)
and
LeeTI'®C, V(eUnNT. (8)

In fact, (6) holds with a;; = (j, by a routine computation. Let p;(¢) = Z;-lzl |¢j1*—1 be the defining
function for B,. We may choose a neighborhood U of 2° and a real-valued function py, € C?(U)
such that

QNU ={(eU:p) <0}

and dp; Adps # 0 on U. Then (7) and (8) will be satisfied provided

L¢(p1) = Le(p2) 9)

for all ¢ € U. The condition that T is generic at 2° implies that (shrinking U if necessary)
0p1 A Op2 # 0 on U , which in turn implies that the system (9) may be solved for the coefficients
B;j € C1(U) and establishes the claim.

Now assume that the neighborhood U and L are chosen to satisfy (6), (7) and (8). Choose n > 0
so that B(z°,2n) C U, and choose ¢ € C®(0B,,) such that ¢ = 1 on B(2°,7/2) and ¢ = 0 on
OB, \ B(2%,n). For 0 <t <1,

0 0

5l = [ £(0)5,0(t2,.0) do() = Iit) + B(e2)

ot Q ot
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where

B(t) = [ 1= 6O Q)50 dot) = [ (1= 400 5 Clt.0) dol0).

\B(z°n/2)

and
0 1

B) = [ HOSOFCU0 @O =1 [ HOFOLCE= 0 dol0)

Let N = B(2°,n/4). The inner product (tz,¢) is bounded away from 1 for z € N, ¢ € Q\ B(z°,7/2)
and t < 1, and so there exists a constant K; so that

[11(t2)| < K (10)

for all ¢ < 1, € N. To estimate I, we integrate by parts. Using properties (ii) and (iii) of L¢ and
the fact that the integrand vanishes outside B(z",7), we obtain

1

B =g [ mOCE=0 )

for some continuous function A vanishing outside B(z",7). Thus

[Pl
RG] < = [ 106201 do(¢)

The unitary invariance of C' and do implies that the latter integral is independent of z, and so if
e1 = (1,0,...,0), we have

[ 1005010 = [ 10tes, 0 do©) = [ 11—t do(0)
OB, OB, OB,
Using formula 1.4.5 (2) of [2],

S e O B Y e
[ -t o = = [ S amey

where D is the unit disk in the plane and m is normalized Lebesgue measure on D. Let

Dt ={AeD: R\ > 0}. Since
_ 2\n—2
[
p\p+ |1 ="

is bounded independently of ¢,0 < ¢ < 1, it suffices to estimate

(1 — A2
/D+ S dmo.

It is easy to check that if 1/2 <t < 1, |1 — A|2 < 4|1 — tA|? for A € D, and therefore

(L= _ @) =1 nm
[1—tA" = [ 1—tA" ~ 1 —tA"2 |1 —tA]2 ~ |1 — )2



It follows that, for 1/2 < ¢ < 1,

/ Q=D ) < 202 / b ampy <22 / 1wy,
pt |1 —2A" - p+ |1 — A2 - D |1 — A2

An explicit integration shows that the latter integral is O(|log(1l —t)|) as ¢ — 17. Therefore there
exist constants Koy, K3 so that

| I5(t2)] < Ko + K3|log(1 — #)] (11)

forall t,1/2 <t < 1 and ¢ € N. Combining (10) and (11) we see that the hypotheses of Lemma
3.1 hold for g = C[fxq], t* = 1/2, and ¢(t) = K; + K2 + K3|log(1 — ¢)|. This completes the proof
of Theorem 1. [

§4 An Example.

If T is generic at each point p € I', Theorem 1 implies that C[fxq] extends continuously to the
closed ball when f is smooth. Consider, for example,

Q:={(=(C1,() €0B, : (1 € D(a,r)}

where D(a,r) is the disk {A € C : |\ — a| = r}, with a,r chosen so that D(a,r) C D. Then
I'={¢=((,¢2) € 0B, : |¢1 —a| =1} is a totally real torus. Take f = 1. A computation gives

72

= am? 1

Clxal(z1,22) =

Now choose disks as in the construction of a “Swiss cheese”: fix R < 1, let Dy = D(0, R), and choose
aj,r; so that if D; := D(a;,r;) then (i) D; C Dy; (ii) D; N Dy = 0 if j # k; (iii) > j21mj < oo and
(iv) X := Do \ U72,D; has empty interior. It is known that then X has positive two-dimensional
measure. If

Y :={¢=(C,) €IB, : (1 € X}
then Y is a compact set with empty interior and o(Y) > 0. Using (12) we see that

M8

C[XY](Zl,ZQ
]:1 1 — ajzl

the sum converging uniformly on the closed ball.
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