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Abstract. The Mergelyan and Ahlfors-Beurling estimates for the Cauchy

transform give quantitative information on uniform approximation by rational
functions with poles off K. We will present an analogous result for an integral
transform on the unit sphere in C2 introduced by Henkin, and show how it can
be used to study approximation by functions that are locally harmonic with

respect to the Kohn Laplacian �b.

1. Introduction

The primary tool in the study of rational approximation on compact subsets of the
plane is the Cauchy transform µ̂ of a compactly supported, complex Borel measure
µ, defined by

µ̂(z) =

∫
dµ(ζ)

ζ − z
.

The following facts about µ̂ can be found in many sources (see, for example [3], [7],
[8], [17]): µ̂ is finite a.e. with respect to Lebesgue measure m on the plane, vanishes
at ∞, and satisfies

(1.1) ∂û/∂z = −πµ

in the sense of distributions. If µ is absolutely continuous with respect to Lebesgue
measure m on the plane, then µ̂ is continuous on C and thus is bounded. Mergelyan
([16], see also [9], or [7], Lemma 3.1.1) proved the following estimate:

(1.2)

∫
K

dm(ζ)

|ζ − z|
≤ 2

√
π ·m(K).

This can be used to give a quantitative estimate for rational approximation as
follows. For a compact set K, C(K) will denote the set of all continuous functions
onK with uniform norm ∥f∥K = max{|f(z)| : z ∈ K}, and R(K) will be the closure
in C(K) of the set of rational functions holomorphic in a neighborhood (allowed to
depend on the function) of K. Let ϕ be any smooth compactly supported function
on the plane. The Cauchy-Green formula (which also proves (1.1)) gives

ϕ(z) =
1

π

∫
C

∂ϕ

∂ζ
· 1

ζ − z
dm(ζ)(1.3)

=
1

π

∫
C\K

∂ϕ

∂ζ
· 1

ζ − z
dm(ζ) +

1

π

∫
K

∂ϕ

∂ζ
· 1

ζ − z
dm(ζ).
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As a function of z ∈ K, the integral over the complement of K in (1.3) is easily
seen to belong to R(K), and so Mergelyan’s estimate readily implies that

(1.4) dist(ϕ,R(K)) := inf{∥ϕ− g∥K : g ∈ R(K)} ≤ C∥∂ϕ/∂z∥K ·
√
m(K)

with C = 2/
√
π. In particular, (1.4) gives an easy proof of the Hartogs-Rosenthal

theorem: m(K) = 0 implies R(K) = C(K).
An estimate similar to (1.2), due to Ahlfors and Beurling ([1], see also [3], [9]),

states that

(1.5)

∣∣∣∣∫
K

dm(ζ)

ζ − z

∣∣∣∣ ≤ √
π ·m(K)

for all z ∈ C. This can be used to give a more precise estimate for the “analytic
content” λ(K) := dist(z,R(K)). Taking ϕ to be compactly supported and equal to
z near K, (1.5) together with the Ahlfors-Beurling estimate gives

(1.6) λ(K) ≤
√
m(K)/π.

This inequality was first observed by H. Alexander ([2]). D. Khavinson ([13], see
also [9]) established a lower bound for λ(K) when K is a set of finite perimeter,
in terms of the area and perimeter of K, and combining this with (1.6) gave a
new proof of the isoperimetric inequality in the plane. In subsequent work ([14]),
Khavinson gave geometric estimates for harmonic approximation in Rn. We will
say more about Khavinson’s results in section 3.

Given a smoothly bounded strictly convex domain Ω ⊂ Cn, G. Henkin ([11])
constructed a kernel and transform on ∂Ω that bears some similarity to the Cauchy
transform. In the case when Ω is the open unit ball B in C2, Henkin’s kernel is
defined for ζ ̸= z in S = ∂B by

H(ζ, z) =
⟨Tz, ζ⟩

|1− ⟨ζ, z⟩|2
,

where ⟨z, ζ⟩ is the Hermitian inner product ⟨z, ζ⟩ = z1ζ1 + z2ζ2 and T is the
transformation Tz = (z2,−z1). (See [18] for information on Henkin’s kernel on the
sphere, and [4], [5], [6], [15] for applications to approximation theory.) It is clear that
H(Uz, Uζ) = H(z, ζ) for any unitary transformation U . For fixed z ∈ S, H(z, ·) is
integrable with respect to the standard invariant three-dimensional measure σ on
S (uniformly in z, by the unitary invariance). Given a measure µ on S, define the
Henkin transform Kµ of µ by

Kµ(z) =

∫
S

H(ζ, z) dµ(ζ), z ∈ S.

Then (cf. equation (1.1))

L(Kµ) = −2π2µ

in the sense of distributions, where L is the standard tangential Cauchy-Riemann
operator on S, L = z2∂/∂z1 − z1∂/∂z2, provided that µ satisfies the (necessary)
condition

∫
P dµ = 0 for all holomorphic polynomials P . There is also an analogue

of the Cauchy-Green formula involving H (see [5]):

(1.7) ϕ(z) = Φ(z) + 2

∫
S

H(ζ, z)L(ϕ)(ζ) dσ(ζ),

where Φ belongs to the ball algebra A(B) consisting of functions holomorphic in
B and continuous on its closure. The equation (1.7) is well-suited for studying
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approximation by functions g satisfying LL(g) = 0, where L = z2∂/∂z1 − z1∂/∂z2
is the conjugate operator to L, for the following reason: a computation gives (we
write Lz to indicate differentiation in the z-variable)

(1.8) Lz(H(ζ, z)) = (1− ⟨ζ, z⟩)−2 := C(ζ, z), z ̸= ζ ∈ S,

where C is the Poisson-Szegö kernel on the sphere, and so for ζ ̸= z ∈ S

(1.9) LzLzH(ζ, z) = 0,

since C(ζ, z) is anti-holomorphic in z. We note that as an operator on functions,
the Kohn Laplacian �b on the sphere S is (up to a constant) equal to LL (see for
example [10]), but we do not use this fact in any essential way.

If U ⊂ S is (relatively) open, we say g is �b–harmonic in U if LLg = 0 in U (in
the weak sense). If K ⊂ S is compact, we denote by H(K) the uniform closure in
C(K) of functions that are �b–harmonic in a neighborhood of K, and for f ∈ C(K)
we set

dist(f,H(K)) := inf{∥f − g∥K : g ∈ H(K)}.
If K has non-empty interior, then f ∈ H(K) is easily to seen to imply LL(f) = 0
on int(K), and hence H(K) ̸= C(K) if K has non-empty interior.

We will first establish an analogue of (1.2) for the Henkin transform:

Theorem 1.1. There exists a constant C > 0 such that if K ⊂ S is compact, then∫
K

|H(z, ζ)| dσ(ζ) ≤ Cσ(K)1/4

for all z ∈ S. Moreover, the exponent 1/4 is the best possible, i.e., it cannot be
replaced by any larger exponent.

This will allow us to easily conclude the following analogue of (1.4):

Theorem 1.2. There exists C > 0 such that for all ϕ ∈ C∞(S) and all K ⊂ S
compact,

dist(ϕ,H(K)) ≤ C∥Lϕ∥K · σ(K)1/4.

An immediate consequence of Theorem 1.2 is a Hartogs-Rosenthal-type result
for uniform approximation by �b–harmonic functions.

Corollary 1. If σ(K) = 0, then H(K) = C(K).

Proof. If f ∈ C(K), we may choose a sequence ϕn ∈ C∞(S) with
limn→∞ ∥f − ϕn∥K = 0. By Proposition 1, if σ(K) = 0, ϕn ∈ H(K) for each n,
and so f ∈ H(K). �

In section 2 we give the proof of Theorem 1.1. Section 3 contains the brief proof
of Theorem 1.2 as well as several remarks and open questions.

2. Proof of Theorem 1.1

We will make use of the formula (see for example [19], Lemma 1.10)

(2.1)

∫
S

fdσ =

∫
D

∫ 2π

0

f(λ,
√
1− |λ|2 eiθ) dθ dm(λ),

for any f ∈ L1(dσ), where D is the unit disk in the complex plane andm is Lebesgue
measure on the plane. (Neither m nor σ are normalized). Given quantities A,B
depending on one or more variables we use the notation A . B to indicate the
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existence of a positive constant k independent of the variables such that A ≤ kB,
and A ≈ B to indicate that both A . B and B . A hold. We note that it suffices
to prove the estimate of Theorem 1.1 when σ(K) is sufficiently small, a fact we will
use implicitly in what follows.

Let K be a compact subset of S. For fixed z ∈ K,

(2.2)

∣∣∣∣∫
K

H(ζ, z) dσ(ζ)

∣∣∣∣ ≤ ∫
K

|H(ζ, z)| dσ(ζ) =
∫
K′

|H(ζ, e1)|dσ(ζ),

where U is a unitary transformation with U(z) = (1, 0) := e1, using the unitary
invariance of H and σ, and K ′ = {U(ζ) : ζ ∈ K}. Since σ(K ′) = σ(K), the
estimate of Theorem 1.1 will be established if we can show that there exists C > 0
such that for all compact K,

(2.3)

∫
K

|H(ζ, e1)|dσ(ζ) ≤ Cσ(K)1/4.

Note that

(2.4)

∫
K

|H(e1, ζ)|dσ(ζ) =
∫
K

|ζ2|
|1− ζ1|2

dσ(ζ) =

∫
K

√
1− |ζ1|2
|1− ζ1|2

dσ(ζ) =

∫
K

h̃ dσ

where for λ ∈ D,

(2.5) h(λ) :=

√
1− |λ|2
|1− λ|2

and h̃(ζ1, ζ2) = h(ζ1). Let

Dt := {λ ∈ D : h(λ) ≥ t}

and set

D̃t = {(ζ1, ζ2) ∈ S : ζ1 ∈ Dt} = {ζ ∈ S : h̃(ζ) ≥ t}.
We now imitate the key step in the proofs of both the Mergelyan and Ahlfors-

Beurling estimates. Since σ(D̃t) clearly depends continuously on t, we may choose

t so that σ(K) = σ(D̃t). The equalities

σ(D̃t) = σ(D̃t ∩K) + σ(D̃t\K) and σ(K) = σ(K ∩ D̃t) + σ(K\D̃t)

imply that σ(K\D̃t) = σ(D̃t\K). Moreover, h̃ < t on K\D̃t while h̃ ≥ t on D̃t\K,
so that ∫

K\D̃t

h̃ dσ < tσ(K \ D̃t) = tσ(D̃t \K) ≤
∫
D̃t\K

h̃ dσ.

Therefore,∫
K

h̃ dσ =

∫
K∩D̃t

h̃ dσ +

∫
K\D̃t

h̃ dσ(2.6)

<

∫
K∩D̃t

h̃ dσ +

∫
D̃t\K

h̃ dσ =

∫
D̃t

h̃ dσ = 2π

∫
Dt

h dm,

where the last equality uses (2.1). Since σ(D̃t) = 2πm(Dt) (again by (2.1)), (2.4)
and (2.6) together imply that (2.3), and therefore Theorem 1.1, will be established
if we can show that

(2.7)

∫
Dt

h dm ≈ m(Dt)
1/4.
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The proof of the estimate (2.7) will be broken down into two lemmas. The first
allows us to replace in our estimates the domains Dt, each of which is bounded by
an algebraic curve of degree four internally tangent to ∂D at λ = 1, by simpler
domains.

Lemma 2.1. There exist constants a, b, c such that if

ξt = 1− at−2/3, ηt = bt−2/3, and xt = 1− ct−2/3,

then for all t sufficiently large

(i) Dt ⊂ Bt := {λ : ξt < Re(λ) < 1, |Im(λ)| < ηt};
(ii) Ct := {λ : |λ− xt| ≤ 1− xt} ⊂ Dt;
(iii) m(Dt) ≈ t−4/3.

Proof. First note that if we write λ = ξ + iη, λ ∈ D, then for fixed ξ, 1 − |λ|2 is
decreasing in η while |1−λ|2 is increasing in η, implying that h(ξ+ iη) is decreasing
in η. Therefore

h(ξ + iη) ≤ h(ξ) =

√
1− ξ2

(1− ξ)2
=

√
1 + ξ

(1− ξ)3/2
≤

√
2

(1− ξ)3/2
,

so that if ξ < ξt,

h(ξ + iη) ≤
√
2

(at−2/3)3/2
= t

if we take a = 21/3. This implies

(2.8) Dt ⊂ D ∩ {ξ + iη : ξ ≥ ξt}.
Next, a computation shows that

sgn
∂

∂ξ
h(ξ + iη) = sgn G(ξ, η),

where
G(ξ, η) = (1− ξ)2(2 + ξ)− η2(2− ξ).

Furthermore, assuming ξ + iη ∈ D and ξ > 0, it is easy to check that

G(0, η) > 0, G(
√
1− η2, η) < 0, and

∂G(ξ, η)

∂ξ
< 0.

It follows that for fixed η ̸= 0, h(ξ + iη) attains a maximum on 0 < ξ <
√

1− η2

at the unique value ξ = ξ∗ satisfying G(ξ∗, η) = 0, i.e.,

(1− ξ∗)2κ = η2, where κ =
2 + ξ∗

2− ξ∗
.

Substituting this relation into h we get

h(ξ∗ + iη) =

√
2κ− η

√
κ(κ+ 1)

(κ+ 1)η3/2
≤

√
2κ

(κ+ 1)η3/2
.

Since 0 < ξ∗ < 1, 1 < κ < 3, and so taking η = ηt = bt−2/3 we get

h(ξ + iηt) ≤ h(ξ∗ + iηt) ≤
√
6

2η
3/2
t

= t

if we take b = (3/2)1/3. Since h is decreasing in η, this implies

(2.9) Dt ⊂ D ∩ {ξ + iη : η ≤ ηt}.
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Combining (2.8) and (2.9) gives assertion (i).
To prove (ii), note that the fact that h(ξ+ iη) is decreasing in η implies that on

Ct, the minimum of h is attained on ∂Ct. If |λ− xt| = 1− xt, λ = ξ+ iη, it is easy
to check that

1− |λ|2 = 2xt(1− ξ), |1− λ|2 = 2(1− xt)(1− ξ)

and therefore for λ ∈ ∂Ct,

(2.10) h(λ) =

√
2xt

2(1− xt)
√
1− ξ

≥
√
2xt

2
√
2(1− xt)3/2

using the fact that 1− ξ ≤ 2(1− xt) for λ ∈ ∂Ct. If xt = 1− ct−2/3 with c = 1/2,
then xt > 1/2 for t > 1, and we obtain from (2.10)

h(λ) ≥ 1

2
√
2(ct−2/3)3/2

= t

for λ ∈ ∂Ct; this estimate then holds for all λ ∈ Ct, by our previous observation.
This shows that Ct ⊂ Dt and completes the proof of (ii).

Finally, we have shown that Ct ⊂ Dt ⊂ Bt where Ct is a disk with radius ≈ t−2/3

and Bt is a rectangle with each side of length ≈ t−2/3. This establishes (iii) and
completes the proof of Lemma 2.1. �

Lemma 2.2. ∫
Dt

h dm ≈ t−1/3.

Proof. First, by Lemma 2.1 (iii),∫
Dt

h dm ≥
∫
Dt

t dm = tm(Dt) & t−1/3.

Next, note that for t < t′, Bt′ ⊂ Bt and, by Lemma 2.1 (ii), h < t on D\Bt.
Extending h to be zero outside the unit disk, we have∫

Dt

h dm ≤
∫
Bt

h dm =

∞∑
n=0

∫
B2nt\B2n+1t

h dm

<
∞∑

n=0

2n+1t · [m(B2nt)−m(B2n+1t)] . t−1/3,

using the fact that m(Bt) ≈ t−4/3 and summing the series. This completes the
proof of Lemma 2.2. �

Finally, the estimate (2.7) follows immediately from Lemma 2.1 (iii) and Lemma
2.2, as does the assertion in Theorem 1.1 that the exponent 1/4 is as large as
possible. This completes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2 and Remarks

To establish Theorem 1.2 fix K ⊂ S compact, and let Ω be a neighborhood of K
in S. Use (1.7) to write for a given ϕ ∈ C∞(S),

(3.1) ϕ(z) = Φ(z) + I1(z) + I2(z)
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with Φ ∈ A(B) and

I1(z) := 2

∫
S\Ω

H(ζ, z)Lϕ(ζ)dσ(ζ), I2(z) := 2

∫
Ω

H(ζ, z)Lϕ(ζ) dσ(ζ).

Since Φ is a uniform limit on S of functions Φn satisfying L(Φn) = 0,Φ|K ∈ H(K).
Moreover, I1(z) is smooth as a function of z on Ω and by (1.9 ) satisfies LL(I1) = 0
on Ω. Therefore I1 ∈ H(K) and so

(3.2) dist(ϕ,H(K)) ≤ ∥I2(z)∥K .

For z ∈ K,

(3.3) |I2(z)| ≤ 2∥L(ϕ)∥Ω
∫
Ω

|H(ζ, z)| dσ(ζ) ≤ C∥L(ϕ)∥Ω · σ(Ω)1/4

by Theorem 1.1. Since Ω was an arbitrary neighborhood of K, we may apply (3.3)
to a sequence of neighborhoods decreasing to K and conclude from (3.2) that

dist(ϕ,H(K)) ≤ ∥I2(z)∥K ≤ C∥L(ϕ)∥K · σ(K)1/4.

This completes the proof of Theorem 1.2. �

Remark 3.1. As we noted in the introduction, for a compact plane set K, vanishing
of the analytic content λ(K) = inf{∥z− g(z)∥K : g ∈ R(K)} = 0 is a necessary and
sufficient condition for R(K) to equal C(K), by the Stone-Weierstrass theorem. In
([14]) Khavinson investigated approximation by harmonic functions, replacing the
analytic content by

Λ(K) := dist(|x|2,H(K))

where for K compact in Rn, H(K) is the closure in C(K) of functions harmonic in
a neighborhood of K, and for x = (x1, . . . , xn), |x|2 =

∑n
j=1 x

2
j . Khavinson proves

that Λ(K) = 0 implies H(K) = C(K) (since H(K) is not an algebra, this does not
follow from Stone-Weierstrass), and gives an upper bound on Λ(K) in terms of the
n-dimensional Lebesgue measure of K. The choice of the function |x|2 is motivated
by the fact that the harmonic functions are defined by △h = 0, while △|x|2 is
constant (△ being the Laplace operator). In the setting of rational approximation
the functions holomorphic near K (by Runge’s theorem, such functions restricted
to K belong to R(K)) are defined by ∂g/∂z = 0, while ∂z/∂z = 1.

This suggests the question: is there a function ϕ ∈ C∞(S) such that for all
compact sets K, ϕ ∈ H(K) implies H(K) = C(K)? Note that �bϕ = 1 has no
solutions: since �b is self-adjoint as an operator on L2(S), a necessary condition
for the existence of a global solution to �bϕ = f is that f is orthogonal to Ker(�b).
Since �b(1) = 0, no such g exists.

Remark 3.2. Khavinson (see [13], also [9]) established the following lower bound
on the analytic content of a bounded domain Ω ⊂ C with boundary Γ: λ(Ω) ≥
2m(Ω)/ℓ(Γ), where ℓ(Γ) is the length of Γ. Combining this with the upper bound
(1.6) applied to K = Ω gives the isoperimetric inequality ℓ(Γ)2 ≥ 4πm(Ω). For the
harmonic content Λ(K), as is remarked in ([14]), no such lower bound is possible.
In fact, there exist “Swiss cheese” sets K which are the intersection of domains Ωn

with areas m(Ωn) bounded away from zero and boundary lengths ℓ(Γn) bounded
above, yet H(K) = C(K).
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In our setting, a general lower bound on dist(ϕ,H(K)) involving ∥Lϕ∥K and/or
geometric quantities associated to K is not possible. For example, let

K = {(z1, z2) ∈ S : |z2| > 1/2}
and let ϕ be a smooth function on S such that ϕ(z) = z1/z2 in a neighborhood
of K. Then L(ϕ) = 1 on a neighborhood of K, so �bϕ = 0 on a neighborhood of
K, i.e., ϕ ∈ H(K). We may ask if such a lower bound is possible for a particular
choice of ϕ. In particular, are there compact subsets of the sphere that are the
intersection of domains Ωn on the sphere for which σ(Ωn) is bounded away from
zero, the two-dimensional Hausdorff measure of ∂Ωn is bounded above, and yet
H(K) = C(K)?

Remark 3.3. An estimate of the type in Theorem 2 with H(K) replaced by R(K)
or P (K) (the closure in C(K) of the holomorphic polynomials) would be desirable.
In particular, such an estimate would settle this open question: does there exist a
compact rationally convex (resp. polynomially convex) subsetK of S with σ(K) = 0
but R(K) ̸= C(K) (resp. P (K) ̸= C(K))? Examples of A. Izzo ([12]) show that
such estimates on rational or polynomial approximation cannot hold for compact
subsets of the unit sphere in Cn for any n > 2.
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