
Approximation Problemson the Unit Sphere in C 2John T. Anderson and John WermerDediated to the memory of S. Ya. KhavinsonAbstrat. Let � be the graph of a H�older ontinuous funtion over a Swissheese E ontained in the open unit disk and having the property that everyJensen measure for R(E) is trivial. We show that if � lies in the boundary ofthe unit ball in C 2 , then R(�) = C(�). In the appendix we give a geometriinterpretation of a lass of sets X on the sphere introdued by R. Basener,for whih R(X) 6= C(X).
1. IntrodutionLet X be a ompat subset of C n . We denote by R0(X) the algebra of all funtionsP=Q where P and Q are polynomials on C n and Q 6= 0 on X , and we denote byR(X) the uniform losure of R0(X) in the spae C(X) of ontinuous funtions onX . We are interested in �nding onditions on X that imply that R(X) = C(X),i.e., that eah ontinuous funtion on X is the uniform limit of a sequene ofrational funtions holomorphi in a neighborhood of X .We denote by hr(X) the rationally onvex hull of X , de�ned as the set ofpoints y 2 C n suh that every polynomial Q with Q(y) = 0 vanishes at some pointof X . The following is a neessary ondition for the equality R(X) = C(X):(1.1) hr(X) = X:If (1.1) holds, we say that X is rationally onvex. Rational onvexity is invisiblewhen studying rational approximation on plane sets, sine every ompat planeset satis�es (1.1).In this artile we shall be onerned with the speial ase of this question whenX is a losed subset of the unit sphere �B = f(z; w) : jzj2 + jwj2 = 1g in C 2 . The�rst result on this problem was obtained by Rihard Basener [4℄ in 1972. Baseneronstruted a family of rationally onvex sets XE � �B for whih R(X) 6= C(X).Let E be a ompat subset of the open unit disk D � fz 2 C : jzj < 1g. For eah1991 Mathematis Subjet Classi�ation. Primary 32E30, Seondary 46J10.



2 John T. Anderson and John Wermerz 2 D we put z = fw 2 C : jzj2 + jwj2 = 1g:De�nition 1.1. XE = f(z; w) : z 2 E and w 2 zg.De�nition 1.2. A Jensen measure for a point z 2 E, relative to the algebra R(E),is a probability measure � on E suh thatlog jf(z)j � ZE log jf j d� for all f 2 R(E):For information on Jensen measures, see [6℄.De�nition 1.3. The set E is of type (�) if for all z 2 E, the only Jensen measurefor z relative to R(E) is the point mass Æz.Theorem 1.4 (Basener, [4℄). Let E be a ompat subset of the open unit disk.Assume that R(E) 6= C(E), and that E is of type (�). Then XE is rationallyonvex and R(XE) 6= C(XE).In the onverse diretion, Basener showed the following (see setion 3 of [5℄): if XEis rationally onvex, then E is of type (�). We note that if a ompat plane set Eis of type (�) and R(E) 6= C(E), then E has empty interior and the omplementof E is in�nitely onneted. Sets E with property (�) satisfying R(E) 6= C(E) areknown to exist; see the remarks on the \Swiss heese" sets below.Corollary 1.5. Let E be of type (�). Then eah losed subset Y of XE is rationallyonvex.Proof. Fix a point x 2 C 2 nY . If x lies outside XE , then there exists a polynomialP with P (x) = 0 and P 6= 0 on XE , hene P 6= 0 on Y . If x lies in XE , then xbelongs to �B n Y . It follows that there exists a linear funtion L with L(x) = 1and jLj < 1 on �B n fxg. Then L� 1 vanishes at x but not on Y .This orollary provides us with a large olletion of rationally onvex subsets of�B on whih to test the question: what is required of a subset Y of �B , beyondrational onvexity, in order that the equality R(Y ) = C(Y ) may hold? We makethe following onjeture:Conjeture: Let E be a set of type (�) and let f be a ontinuous omplex-valuedfuntion de�ned on E suh that jf(z)j = p1� jzj2 for all z 2 E. Denote by �fthe graph of f in C 2 : �f = f(z; f(z)) : z 2 Eg:Then R(�f ) = C(�f ).In Setion 2 we shall prove a speial ase of this onjeture in Theorem 2.1.Swiss Cheeses: The lassial example of a ompat plane set E without interiorsuh that R(E) 6= C(E) is the so-alled \Swiss heese" of S. Mergelyan and A.



Approximation Problems on the Unit Sphere in C 2 3Roth (see [6℄). Fix a losed disk D0 � D and hoose a ountable family of disjointopen disks Dj ; j = 1; 2; : : : ontained in D0, in suh a way thatE � D0 n 1[j=1Djhas empty interior. We assume that P11 rj <1, where rj is the radius of Dj . Itfollows that R(E) 6= C(E) (see [6℄). MKissik and others have onstruted Swissheeses with property (�). At the end of this artile, in the Appendix, we showthat XE an be regarded as a three-dimensional Swiss heese.2. Rational Approximation on Graphs in �BIn our paper [3℄, entitled \Rational Approximation on the Unit Sphere in C 2 ," wetreated ases of the onjeture stated in the Introdution. To obtain the equalityR(X) = C(X) for ertain subsets X of �B , we imposed on X a strengthening ofthe rational onvexity ondition whih we alled the \hull-neighborhood property"(see Theorem 2.5 of [3℄).It turns out that for a graph �f in �B , where f is a funtion de�ned on a setof type (�) and satisfying a mild regularity ondition, we an dispense with theassumption of the hull-neighborhood ondition. We have the following:Theorem 2.1. Let E be a ompat subset of the open unit disk D of type (�) andlet f be a ontinuous funtion on D satisfying a H�older onditionjf(z)� f(z0)j �M jz � z0j� for all z; z0 2 D ;where M and � are onstants, 0 < � < 1. Assume jf(z)j = p1� jzj2 for allz 2 D . Let �f denote the graph of f over E. Then R(�f ) = C(�f ).Before beginning the proof, we give some preliminaries. Our proof will be based ona transform of measures on �B , given by G. Henkin in 1977 in [7℄, whih generalizesthe Cauhy transform of measures on plane sets. Let � be a omplex measure on�B . In [7℄, Henkin de�ned the kernel(2.1) H(�; z) = �1z2 � �2z1j1� hz; �ij2on �B � �B n fz = �g, where h; i denotes the standard Hermitian inner produt inC 2 . Henkin's transform is the funtionK�(�) = Z�B H(�; z)d�(z):Then K� 2 L1(�B ) and K� is smooth on �B n supp(�). (see also [10℄).If � is orthogonal to polynomials, Henkin showed that(2.2) Z � d� = 14�2 Z�B K� �� ^ !; where !(z) = dz1 ^ dz2



4 John T. Anderson and John Wermerfor all � 2 C1(�B ). It follows that if X is a losed subset of �B and � is a measuresupported on X with � orthogonal to R(X), then (2.2) holds. In [9℄ H.P. Lee andJ.Wermer proved that in this setting if X is rationally onvex, then K� extendsfrom �B nX to the interior of B as a holomorphi funtion, again denoted K�, byabuse of language.For eah a 2 C we put as earliera = fw 2 C : jaj2 + jwj2 = 1gand we put �a = f(a; w) : jaj2 + jwj2 < 1g:So �a is the disk on the omplex line fz = ag bounded by the irlef(a; w) : w 2 ag. For eah a, K� restrited to �a is analyti. Without loss ofgenerality we shall assume E � D0 � fz : jzj < 1� �0g for some �0 > 0.In the proof of Theorem 2.1 we shall make use of the following four resultsin our paper [3℄ (proved as Lemma 2.3, Lemma 2.2, Lemma 2.6, and formula (14)of setion 4 of that paper, respetively):Lemma 2.2. Let � be a measure on �B and put X = supp(�). Then for all a 2 Dand for all w 2 a, we have(2.3) jK�(a; w)j � 4k�kdist4((a; w); X) :Here k�k denotes the total variation of the measure �. In the next lemma, m3refers to three-dimensional Hausdor� measure.Lemma 2.3. Let X be a rationally onvex subset of �B with m3(X) = 0. Let � bea measure on X with � ? R(X). If the holomorphi extension of K� to B belongsto the Hardy spae H1(B), then � � 0.Lemma 2.4. With the notations of the preeding Lemma, assume that for somes > 0, the restrition of K� to �a lies in Hs(�a) for almost all a 2 D0. ThenK� 2 H1(B) and so, by Lemma 2.3, � � 0.Lemma 2.5. Let f and �f be as in Theorem 2.1. Fix a measure � orthogonal toR(�f ). There exists a onstant , depending on only on �, suh that for all a 2 Dand for all w 2 a, we have(2.4) jw � f(a)j2=� �  � dist2((a; w);�f ):We are now ready to begin the proof of Theorem 2.1.Lemma 2.6. Let f be as in Theorem 2.1 and let � be a measure on �f orthogonalto R(�f ). There exists a onstant � depending only on � suh that for all a 2 D0,setting r =p1� jaj2, we have(2.5) Z 2�0 jK�(a; rei�)j�=8 d� � �:



Approximation Problems on the Unit Sphere in C 2 5Proof. Fix a 2 D0; � 2 [0; 2�℄ and put w = rei�. By (2.4),1dist4((a; w);�f ) � 2jw � f(a)j4=� :The estimate (2.3) then givesjK�(a; w)j � 4k�k2jw � f(a)j4=�and so jK�(a; w)j�=8 � 2jw � f(a)j1=2 ;where 2 is a onstant depending only on �. ThusZ 2�0 jK�(a; rei�)j�=8 d� � 2 Z 2�0 d�jrei� � f(a)j1=2 :We write f(a) = rei�0 . Then the right-hand side equals2 Z 2�0 d�r1=2jei� � ei�0 j1=2 � 2r1=2 Z 2�0 d�jei� � 1j1=2 :Note that the integral on the right hand side of the last inequality is �nite. Also,sine jaj < 1� �0, there exists r0 > 0 suh that r > r0 for every a 2 D0. SojK�(a; w)j�=8 � 2r1=20 Z 2�0 d�jei� � 1j1=2 :Denoting this last expression by �, we get (2.5).Lemma 2.7. Fix a 2 D0 nE. Put r =p1� jaj2. For R < r we have(2.6) Z 2�0 jK�(a;Rei�)j�=8 d� � �;where � is the onstant in (2.5).Proof. Sine a lies outside E, �a is disjoint from �f , so the restrition of K� to�a extends ontinuously to �a. It is well known that the funtionR! Z 2�0 jK�(a;Rei�)j�=8 d�is monotoni on 0 < R < r and ontinuous on 0 � R � r. So (2.5) implies(2.6).Lemma 2.8. Fix a0 in E. Fix R <p1� ja0j2. Then(2.7) Z 2�0 jK�(a;Rei�)j�=8 d� � �;where � is the onstant in (2.5).



6 John T. Anderson and John WermerProof. Choose a sequene fang onverging to a0 suh that an 2 D0 n E for eahn. For n large, then, R <p1� janj2. By Lemma 2.7,Z 2�0 jK�(an; Rei�)j�=8 d� � �; n� 1:Also K�(an; Rei�) ! K�(a0; Rei�) uniformly on 0 � � � 2� as n ! 1 sine K�is ontinuous on int(B). By ontinuity, then, we get (2.7).Lemmas 2.7 and 2.8 say that for all a0 2 D0, K� restrited to �a0 lies inH�=8(�a0). Lemma 2.4 then yields that � � 0. Sine this holds for eah � or-thogonal to R(�f ), we onlude that R(�f ) = C(�f ), and so Theorem 2.1 isproved. �Appendix: Geometri Interpretation of the sets XEWe shall show that the sets XE lying in �B an be seen as three-dimensionalanalogues of the Swiss heese E in C . We denote k-dimensional Hausdor� measureby mk.The Swiss heese E is onstruted by removing a ountable family of disjointopen disks Dj from a losed disk D0. The following properties hold:(i): P1j=1m1(�Dj) <1;(ii): m2(E) > 0;(iii): The measure dz restrited to the union of the irles �Dj (properlyoriented) is �nite on E and is orthogonal to R(E).It follows immediately from (iii) that R(E) 6= C(E).Let us now start with a family of disks Dj in C as above and let us replaeeah Dj by the open solid torus Tj = f(z; w) 2 �B : z 2 Djg; j = 1; 2; : : : ; withT0 = f(z; w) 2 �B : z 2 D0g. SetE� = T0 n 1[j=1 Tj :Then E� is a ompat subset of �B with the following properties:(i�) : P1j=1m2(�Tj) <1;(ii�) : m3(E�) > 0;(iii�) : The measure � = dz ^ dw restrited to the union of the boundaries�Tj (properly oriented) is �nite on E� and is orthogonal to R(E�).Properties (i�) and (ii�) follow immediately from Fubini's Theorem and properties(i) and (ii) of the Swiss Cheese. As for (iii�), the �niteness of � = dz ^ dw followsfrom assumption (i�) together with the following assertion.Claim: Let M be a smooth two (real) dimensional submanifold of C 2 , S a Borelsubset of M , and m2 two-dimensional Hausdor� measure. Thenk�k(S) � m2(S):



Approximation Problems on the Unit Sphere in C 2 7Here k�k denotes the total variation measure of �.Proof. Identify C 2 with R4 using oordinatesz = x+ iy; w = u+ iv:We may assume that near S, M is given parametrially, i.e., is the image of asmooth map � from a neighborhood of the origin in R2 to M . Using oordinates(�; �) in R2, let E1; E2 be the images of the tangent vetors �=�� and �=�� underthe di�erential of �, soE1 = (x� ; y�; u�; v�); E2 = (x� ; y�; u�; v�)as vetors in R4, where subsripts denote partial derivatives. It is standard thatthe two-dimensional volume form on M is given by (the area of the parallelogramspanned by E1; E2): dV =pdet(g) d�d�;where g is the 2� 2 matrix with entries gij = Ei �Ej , i; j = 1; 2 and � is the usualinner produt in R4. It is also well-known thatm2(S) = ZS dV:On the other hand, writing dx = x�d� + x�d�, et., we obtaindz ^ dw = (dx+ idy) ^ (du+ idv) = (A+ iB) d� ^ d�;where A = x�u� � x�u� � y�v� + y�v�and B = x�v� � x�v� + y�u� � y�u�:To establish the laim it suÆes to show that(2.8) det(g) � A2 +B2:A alulation givesdet(g)� (A2 +B2) = (x�y� � x�y� + v�u� � v�u�)2;whih establishes (2.8) and ompletes the proof of the laim.To prove the assertion of (iii�) that dz ^ dw is orthogonal to R(E�), we argue asfollows: �x a rational funtion f = P=Q, where P;Q are polynomials with Q 6= 0on E�. The set fQ = 0g \ T0 is ontained in S1j=1 Tj . By Heine-Borel, there existsan integer suh that this set is ontained in Snj=1 Tj . We put 
n = T0 nSnj=1 Tj .Then f is holomorphi on 
n. By Stokes' Theorem applied to the form fdz ^ dwon 
n, we have Z�
n fdz ^ dw = Z
n ��f ^ dz ^ dw:The right-hand side of this equation vanishes, sine f is analyti on a neighborhoodof 
0. The left-hand side approahes RE� f d� as n ! 1. So RE� f d� = 0. Thus



8 John T. Anderson and John Wermer� is orthogonal to f . Sine this holds for eah f 2 R0(E�), we have � orthogonalto R(E�).Finally, we remark that R(E�) 6= C(E�) learly follows from (iii�). It is learthat E� oinides with XE , by the de�nition of XE in the Introdution. For anarbitrary Swiss heese E, XE will not be rationally onvex.There is a substantial literature related to the approximation questions treatedin this artile. The referenes below list some of the relevant papers, as well as thosepapers spei�ally ited in this artile.Referenes[1℄ J. Anderson and J. Cima, Removable Singularities for Lp CR funtions, Mih. Math.J. 41 (1994), pp. 111-119.[2℄ J. Anderson and A. Izzo, A Peak Point Theorem for Uniform Algebras Generatedby Smooth Funtions On a Two-Manifold, Bull. London Math. So. 33 (2001),pp. 187{195.[3℄ J. Anderson, A. Izzo and J. Wermer, Rational Approximation on the Unit Sphere inC 2 , to appear in Mih. J. Math[4℄ R. F. Basener, On Rationally Convex Hulls, Trans. Amer. Math. So. 182 (1973),pp. 353{381.[5℄ R. F. Basener, Rationally Convex Hulls and Potential Theory, Pro. Royal So.Edinburgh, 74A (1974/5), pp. 81-89.[6℄ T. Gamelin, Uniform Algebras, 2nd ed. Chelsea, New York, 1984.[7℄ G. M. Henkin, The Lewy equation and analysis on pseudoonvex manifolds, RussianMath. Surveys, 32:3 (1977); Uspehi Mat. Nauk 32:3 (1977), pp. 57{118.[8℄ H. P. Lee, Tame measures on ertain ompat sets, Pro. A. M. S. (1980) pp. 61-67[9℄ H. P. Lee and J. Wermer, Orthogonal Measures for Subsets of the Boundary of theBall in C 2 , in Reent Developments in Several Complex Variables, Prineton Univer-sity Press, 1981, pp. 277-289.[10℄ N. Th. Varopoulos, BMO funtions and the �-equation, Pa. J. Math. 71, no. 1(1977), pp. 221{273.Department of Mathematis and Computer Siene, College of the Holy Cross,Worester, MA 01610-2395E-mail address : anderson�maths.holyross.eduDepartment of Mathematis, Brown University, Providene, R.I. 02912E-mail address : wermer�math.brown.edu


