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Abstract. Let I' be the graph of a Holder continuous function over a Swiss
cheese E contained in the open unit disk and having the property that every
Jensen measure for R(F) is trivial. We show that if I lies in the boundary of
the unit ball in C?, then R(T') = C(T). In the appendix we give a geometric
interpretation of a class of sets X on the sphere introduced by R. Basener,
for which R(X) # C(X).

1. Introduction

Let X be a compact subset of C". We denote by Ro(X) the algebra of all functions
P/Q where P and ) are polynomials on C" and @) # 0 on X, and we denote by
R(X) the uniform closure of Rq(X) in the space C(X) of continuous functions on
X. We are interested in finding conditions on X that imply that R(X) = C(X),
i.e., that each continuous function on X is the uniform limit of a sequence of
rational functions holomorphic in a neighborhood of X.

We denote by h,.(X) the rationally convex hull of X, defined as the set of
points y € C" such that every polynomial @ with Q(y) = 0 vanishes at some point
of X. The following is a necessary condition for the equality R(X) = C(X):

(1.1) h,(X) = X.

If (1.1) holds, we say that X is rationally convex. Rational convexity is invisible
when studying rational approximation on plane sets, since every compact plane
set satisfies (1.1).

In this article we shall be concerned with the special case of this question when
X is a closed subset of the unit sphere OB = {(z,w) : |2|* + |w|*> = 1} in C*. The
first result on this problem was obtained by Richard Basener [4] in 1972. Basener
constructed a family of rationally convex sets Xg C 0B for which R(X) # C(X).
Let E be a compact subset of the open unit disk D = {2z € C: |z| < 1}. For each
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z € D we put
7. ={w e C: |z|* + |w* = 1}.

Definition 1.1. Xg = {(z,w) : z € E and w € 7, }.

Definition 1.2. A Jensen measure for a point z € E, relative to the algebra R(E),
is a probability measure o on E such that

log|f(2)] < /Elogm do for all f € R(E).

For information on Jensen measures, see [6].

Definition 1.3. The set E is of type (8) if for all z € E, the only Jensen measure
for z relative to R(F) is the point mass 4.

Theorem 1.4 (Basener, [4]). Let E be a compact subset of the open unit disk.
Assume that R(E) # C(E), and that E is of type (8). Then Xg is rationally
conver, and R(Xg) # C(Xg).

In the converse direction, Basener showed the following (see section 3 of [5]): if X
is rationally convex, then E is of type (). We note that if a compact plane set E
is of type () and R(E) # C(FE), then E has empty interior and the complement
of E is infinitely connected. Sets E with property (8) satisfying R(E) # C(E) are
known to exist; see the remarks on the “Swiss cheese” sets below.

Corollary 1.5. Let E be of type (8). Then each closed subsetY of Xg is rationally
CONve.

Proof. Fix a point # € C? \ Y. If z lies outside X, then there exists a polynomial
P with P(z) =0 and P # 0 on Xg, hence P # 0 on Y. If = lies in X, then =
belongs to B \ Y. It follows that there exists a linear function L with L(z) =1
and |L| <1 on 0B\ {z}. Then L — 1 vanishes at 2 but not on Y. O

This corollary provides us with a large collection of rationally convex subsets of
OB on which to test the question: what is required of a subset Y of 0B, beyond
rational convexity, in order that the equality R(Y) = C(Y) may hold? We make
the following conjecture:

Conjecture: Let E be a set of type (B) and let f be a continuous complez-valued
function defined on E such that |f(z)] = /1 — |z|? for all z € E. Denote by T'y
the graph of f in C?:

Iy ={(z. f(2) : = € B}.
Then R(Ff) = C(Ff)

In Section 2 we shall prove a special case of this conjecture in Theorem 2.1.

Swiss Cheeses: The classical example of a compact plane set E without interior
such that R(E) # C(E) is the so-called “Swiss cheese” of S. Mergelyan and A.
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Roth (see [6]). Fix a closed disk Dy C I and choose a countable family of disjoint
open disks Dj,j =1,2,... contained in Dy, in such a way that

E=D,\ | D,
j=1

has empty interior. We assume that > [ r; < oo, where r; is the radius of D;. It
follows that R(E) # C(FE) (see [6]). McKissick and others have constructed Swiss
cheeses with property (). At the end of this article, in the Appendix, we show
that X g can be regarded as a three-dimensional Swiss cheese.

2. Rational Approximation on Graphs in OB

In our paper [3], entitled “Rational Approximation on the Unit Sphere in C?,” we
treated cases of the conjecture stated in the Introduction. To obtain the equality
R(X) = C(X) for certain subsets X of 0B, we imposed on X a strengthening of
the rational convexity condition which we called the “hull-neighborhood property”
(see Theorem 2.5 of [3]).

It turns out that for a graph 'y in 0B, where f is a function defined on a set
of type (8) and satisfying a mild regularity condition, we can dispense with the
assumption of the hull-neighborhood condition. We have the following:

Theorem 2.1. Let E be a compact subset of the open unit disk D of type (8) and
let f be a continuous function on D satisfying a Hdélder condition

£() ~ FEO < Mlz— 2| for all z,2' €D,

where M and a are constants, 0 < a < 1. Assume |f(z)| = /1 —|z|? for all
z €. Let T'y denote the graph of f over E. Then R(I'y) = C(T'y).

Before beginning the proof, we give some preliminaries. Our proof will be based on
a transform of measures on B, given by G. Henkin in 1977 in [7], which generalizes
the Cauchy transform of measures on plane sets. Let u be a complex measure on
OB. In [7], Henkin defined the kernel

_ Gm - GE

{20

on 0B x OB\ {z = (}, where (,) denotes the standard Hermitian inner product in
C2. Henkin’s transform is the function

Ku(Q) = s H(C, z)du(2)-

Then K, € L'(9B) and K|, is smooth on 9B \ supp(u). (see also [10]).
If p is orthogonal to polynomials, Henkin showed that

1 —
(2.2) /(;5 dp = o) /ame K, 0¢ ANw, where w(z) =dz1 Adzs

(2.1) H((, 2)
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for all ¢ € C1(OB). It follows that if X is a closed subset of 9B and p is a measure
supported on X with u orthogonal to R(X), then (2.2) holds. In [9] H.P. Lee and
J.Wermer proved that in this setting if X is rationally convex, then K, extends
from 0B \ X to the interior of B as a holomorphic function, again denoted K,,, by
abuse of language.

For each a € C we put as earlier

va:{wE(C:\a|2+|w|2:1}

and we put
A, = {(a,w) : |a)* + |w|* < 1}.

So A, is the disk on the complex line {# = a} bounded by the circle
{(a,w) : w € ~,}. For each a, K, restricted to A, is analytic. Without loss of
generality we shall assume E C Do = {z: |z] < 1 — €p} for some g > 0.

In the proof of Theorem 2.1 we shall make use of the following four results
in our paper [3] (proved as Lemma 2.3, Lemma 2.2, Lemma 2.6, and formula (14)
of section 4 of that paper, respectively):

Lemma 2.2. Let p be a measure on OB and put X = supp(u). Then for alla € D
and for all w € v,, we have

4
(2.3) K, (a,w)| < %
dist™ ((a, w), X)
Here ||u|| denotes the total variation of the measure p. In the next lemma, msg

refers to three-dimensional Hausdorff measure.

Lemma 2.3. Let X be a rationally convex subset of OB with ms(X) = 0. Let pu be
a measure on X with p L R(X). If the holomorphic extension of K, to B belongs
to the Hardy space H'(B), then u = 0.

Lemma 2.4. With the notations of the preceding Lemma, assume that for some
s > 0, the restriction of K, to A, lies in H*(A,) for almost all a € Dy. Then
K, € H'(B) and so, by Lemma 2.3, p = 0.

Lemma 2.5. Let f and I'y be as in Theorem 2.1. Fiz a measure p orthogonal to
R(T'¢). There exists a constant ¢, depending on only on u, such that for all a € D
and for all w € v,, we have

(2.4) lw — f(a)|*/® < ¢ - dist?((a,w),Ty).
We are now ready to begin the proof of Theorem 2.1.

Lemma 2.6. Let f be as in Theorem 2.1 and let i be a measure on I'y orthogonal
to R(L'y). There exists a constant k depending only on u such that for all a € Do,

setting r = /1 — |a|?, we have

27
(2.5) / K, (a,re?)]*/® do < k.
J0
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Proof. Fix a € Dy, ¢ € [0,27] and put w = re’®. By (2.4)
1 c?
! < T
dist*((a,w),Ty) ~ |w — f(a)[*/>
The estimate (2.3) then gives

Alulle’
K, (a, <
Rl S 3 s

and so

K. (a. a/8 < I
‘ N(a/“))‘ = ‘“)7](.((1)‘1/2,

where ¢, is a constant depending only on p. Thus
27 27
|K(a,re™®) %% dp < ¢y / _
/o g Jo e — f(a)]*/2
We write f(a) = re’?0. Then the right-hand side equals

o dg e [P df
)y T w7 S Ty Jer 1

Note that the integral on the right hand side of the last inequality is finite. Also,
since |a| < 1 — €, there exists 79 > 0 such that r > rq for every a € Dy. So

27
o/8 Co df
a5 [

Denoting this last expression by &, we get (2.5). O
Lemma 2.7. Fiza € Do\ E. Put v = /1 — |a|2. For R < r we have
27
(2.6) | Iuta, R o < .
0

where k is the constant in (2.5).

Proof. Since a lies outside F, A, is disjoint from I'y, so the restriction of K, to
A, extends continuously to A,. It is well known that the function

2w
R — / |K,,(a, Re)|*/® dg
J0

is monotonic on 0 < R < r and continuous on 0 < R < r. So (2.5) implies
(2.6). O

Lemma 2.8. Fiz ag in E. Fiz R < \/1 — |ag|>. Then
27

(2.7) | 1uta, R o <
0

where k is the constant in (2.5).
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Proof. Choose a sequence {a,} converging to ag such that a,, € Dy \ E for each
n. For n large, then, R < /1 — |a,|?. By Lemma 2.7,

2w
/ |Ku(an,Rei9)\o‘/8 do <k, n>1.
0

Also K, (an, Re') — K, (ag, Re'”) uniformly on 0 < ¢ < 27 as n — oo since K,
is continuous on int(B). By continuity, then, we get (2.7). O

Lemmas 2.7 and 2.8 say that for all ay € Dy, K, restricted to A,, lies in
H/3(A,,). Lemma 2.4 then yields that x4 = 0. Since this holds for each u or-
thogonal to R(I'y), we conclude that R(I'y) = C(I'y), and so Theorem 2.1 is
proved. OJ

Appendix: Geometric Interpretation of the sets Xpg

We shall show that the sets Xg lying in B can be seen as three-dimensional
analogues of the Swiss cheese E in C. We denote k-dimensional Hausdorff measure
by my.

The Swiss cheese F is constructed by removing a countable family of disjoint
open disks D; from a closed disk Dy. The following properties hold:

(i): 32721 m1(0D;) < oo;

(if): mq(E) > 0;

(iii): The measure dz restricted to the union of the circles dD; (properly

oriented) is finite on E and is orthogonal to R(E).

It follows immediately from (iii) that R(E) # C(E).

Let us now start with a family of disks D; in C as above and let us replace
each D; by the open solid torus T} = {(z,w) € OB : z € D;},j = 1,2,..., with
To = {(z,w) € OB : z € Dg}. Set

E =T\ |J T

j=1
Then E* is a compact subset of 0B with the following properties:
(i7) : 202, ma(9T)) < oo

i
(ii") : ms(E*) > 0;
(iii") : The measure pu = dz A dw restricted to the union of the boundaries

OT; (properly oriented) is finite on E* and is orthogonal to R(E™).

Properties (i") and (ii *) follow immediately from Fubini’s Theorem and properties
(i) and (ii) of the Swiss Cheese. As for (iii "), the finiteness of u = dz A dw follows
from assumption (i”) together with the following assertion.

Claim: Let M be a smooth two (real) dimensional submanifold of C?, S a Borel
subset of M, and ms two-dimensional Hausdorff measure. Then

11l[(S) < ma(S).
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Here ||u|| denotes the total variation measure of p.

Proof. Tdentify C? with R* using coordinates
z=x+ 1y, w=u+iv.

We may assume that near S, M is given parametrically, i.e., is the image of a
smooth map @ from a neighborhood of the origin in R? to M. Using coordinates
(&,n) in R?, let Ey, B> be the images of the tangent vectors /0¢ and §/0n under
the differential of ®, so

Ey = (m&y&:“‘&v&): Ey = (-7777:1/71:“77:7)71)

as vectors in R4, where subscripts denote partial derivatives. It is standard that
the two-dimensional volume form on M is given by (the area of the parallelogram

spanned by Ej, Es):

dV = +/det(g) dé&dn,
where g is the 2 x 2 matrix with entries g;; = E; - Ej, 4,7 = 1,2 and - is the usual
inner product in R*. It is also well-known that

Js
On the other hand, writing dz = z¢d{ + z,dn, etc., we obtain
dz A dw = (dz + idy) A (du + idv) = (A + iB) d¢ A dn,

where

A = zeuy — Tyug — YeUy + Yt
and

B = x¢v; — Tyve + Yy — Ynilg.
To establish the claim it suffices to show that
(2.8) det(g) > A* + B
A calculation gives

det(g) — (A* + B?) = (z¢yy — wqye + vyue — veuy),

which establishes (2.8) and completes the proof of the claim. O

To prove the assertion of (iii") that dz A dw is orthogonal to R(E*), we argue as
follows: fix a rational function f = P/Q), where P,() are polynomials with () # 0
on E*. The set {Q = 0} N Ty is contained in Uj<, Tj. By Heine-Borel, there exists
an integer such that this set is contained in Jj_, T;. We put Q,, = Tp \ Uj_, Tj.
Then f is holomorphic on €,,. By Stokes’ Theorem applied to the form fdz A dw
on 2, we have

fdz/\dw:/ Of Ndz A dw.
0 Qn

The right-hand side of this equation vanishes, since f is analytic on a neighborhood
of Q. The left-hand side approaches [,. f du as n — oo. So [,. f du = 0. Thus
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i is orthogonal to f. Since this holds for each f € Ry(E*), we have u orthogonal
to R(E™).

Finally, we remark that R(E*) # C(E*) clearly follows from (iii ). It is clear
that E* coincides with X g, by the definition of X in the Introduction. For an
arbitrary Swiss cheese F, X will not be rationally convex.

There is a substantial literature related to the approximation questions treated
in this article. The references below list some of the relevant papers, as well as those
papers specifically cited in this article.
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