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Exercises on Sequences and Series

Professor Hwang

1. A sequence (ak) is defined recursively by

ak+1 = 2ak − 1, a0 = 2.

Calculate the terms up to and including a6.

Solution a1 = 3, a2 = 5, a3 = 9, a4 = 17, a5 = 33, a6 = 65.

2. A sequence (ak) is defined recursively by

ak+1 =
1

2

(

ak +
3
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)

, a0 = 2.

Calculate the terms up to and including a3 as fractions. According to your calculator, what
is |

√
3 − a3|?

Solution Repeated calculation gives
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2
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4
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2
(97

56
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.

Thus |
√

3 − a3| ≈ 0.000 000 002 = 2 × 10−9

3. For each series, write out the first five terms, and test for convergence. If possible, use more
than one convergence test and confirm that you reach the same conclusion.
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converges by the integral test, or by comparison with
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diverges by the integral test, limit comparison with the harmonic series, or comparison with
half the harmonic series (a sneaky trick; please see me for details).
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converges by the alternating series test.
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converges by the ratio test, or by comparison with ds
∑
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diverges by the vanishing criterion: the terms do not approach zero.

4. Use the ratio test on the following series. If the ratio test is inconclusive, find a definitive
test.
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Solution The ratio test is inconclusive for both. Instead, use the integral test, or note that
we analyzed both series in class.

5. Use the ratio test to determine the x intervals on which the following series converge.
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Solution The first was done in class; the series converges only if x = 0. For the second, use
the ratio test:
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.

If this limit is smaller than 1, the series converges, while if the limit is larger than 1, the series
diverges. Consequently, the series converges if |x| < 2, or −2 < x < 2, and diverges if |x| > 2.
To check the endpoints x = ±2, plug them into the original series: At x = 2, we have the
harmonic series, since
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Thus, our series diverges at x = 2. Similarly, at x = −2 the series becomes the alternating
harmonic series, which converges by the alternating series test. To summarize the second
power series has radius 2, and the interval of convergence is [−2, 2).


