College of the Holy Cross, Fall Semester, 2021 Math 302 (Professor Hwang), Meeting 10 Surfaces

Exercise 10.1: Assume 0 < r < R are real. Determine where the following mappings are regular surfaces:

- (a) $\mathbf{x}(u, v) = R(\cos u \cos v, \sin u \cos v, \sin v).$
- (b) $\mathbf{x}(u,v) = \left((R + r\cos v)\cos u, (R + r\cos v)\sin u, r\sin v \right).$
- (c) $\mathbf{x}(u, v) = (\cosh u \cos v, \cosh u \sin v, \sinh u).$
- (d) $\mathbf{x}(u, v) = (\sinh u \cos v, \sinh u \sin v, v).$
- (e) $\mathbf{x}(u, v) = (\cosh u \cos v, \cosh u \sin v, u).$

Answer For each, calculate the partials and check for the cross product being nowhere zero. The first is non-regular where $\cos v = 0$ and regular everywhere else. The other four are regular everywhere.

Exercise 10.2: Suppose α and β are regular paths and $\|\beta\| = 1$. Determine conditions under which the mapping $\mathbf{x}(u, v) = \alpha(u) + v\beta(u)$ is a regular surface.

Answer The partials are $\mathbf{x}_u = \alpha'(u) + v\beta'(u)$ and $\mathbf{x}_v = \beta(u)$. This parametrization is regular provided the cross product is non-zero, i.e., when the partials are not proportional. General necessary and sufficient conditions boil down to this, but we can give necessary or sufficient conditions: If $\alpha'(u)$ and $\beta'(u)$ are proportional, there is a real v making $\mathbf{x}_u = \mathbf{0}$; otherwise \mathbf{x}_u is non-zero for all real v. If $\beta(u)$ does not lie in the plane spanned by $\alpha'(u)$ and $\beta'(u)$, then the cross product is non-zero for all real v.

Exercise 10.3: Suppose $\alpha(u) = (x(u), 0, z(u))$ is a regular path with x > 0. Find a parametrization $\mathbf{x}(u, v)$ of the surface obtained by revolving α about the z-axis, with v equal to the "longitude" on the surface, and show your parametrization is regular.

Answer $\mathbf{x}(u, v) = (x(u) \cos v, x(u) \sin v, z(u))$. Regularity is straightforward to check.

Exercise 10.4: Let α be a regular path, and let r > 0. Find a parametrization of the "tube of radius r about α ", i.e., the union of the circles of radius r in the normal planes. Suggestion: Express your parametrization in terms of the Frenet frame of α .

Answer One possibility is $\mathbf{x}(u, v) = \alpha(u) + r \cos v \mathbf{N} + r \sin v \mathbf{B}$, with the normal and binormal vectors evaluated at $\alpha(u)$.

Exercise 10.5: Show the plane x = 1 cuts the hyperboloid of one sheet, $x^2 + y^2 - z^2 = 1$, in a pair of lines crossing at right angles.

Answer Solving the given equations simultaneously gives $y^2 - z^2 = 0$, which is the equation of two lines $z = \pm y$ in the plane x = 1) meeting at right angles.