College of the Holy Cross, Fall Semester, 2021 Math 302 (Professor Hwang), Meeting 05 The Frenet Equations

Exercise 05.1: (Linear algebra warm-up) Suppose $(\mathbf{T}, \mathbf{N}, \mathbf{B})$ is an ordered orthonormal triple in \mathbf{R}^3 .

- (a) Prove the set $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is linearly independent. That is, if $a\mathbf{T} + b\mathbf{N} + c\mathbf{B} = \mathbf{0}$ for some real a, b, c, then a = b = c = 0.
- (b) Prove the set $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ spans \mathbf{R}^3 . That is, every vector v can be written as a linear combination. Hint: If $v = a\mathbf{T} + b\mathbf{N} + c\mathbf{B}$, dot each side with the orthonormal elements in turn to express a, b, and c in terms of v. Then show that the resulting components do in fact express v as a linear combination.
- (c) Let I be an open interval of real numbers, and let $f : I \to \mathbb{R}^3$ be a smooth mapping. Prove that the image of f lies on a sphere centered at the origin if and only if $f \cdot f' = 0$.

Exercise 05.2: Suppose α is a regular path in \mathbb{R}^3 .

- (a) Prove that the curvature κ is given by $\kappa = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$. Hints: If v denotes the speed, then $\alpha' = v\mathbf{T}$ and $\alpha'' = v'\mathbf{T} + \kappa v^2 \mathbf{N}$.
- (b) Prove that the torsion τ is given by $\tau = \frac{\alpha' \cdot (\alpha'' \times \alpha''')}{|\alpha' \times \alpha''|^2}$.
- (c) Calculate the curvature and torsion of the twisted cubic $\alpha(t) = (at, bt^2, ct^3)$.

Exercise 05.3: Exercise 1, page 18.

- Exercise 05.4: Exercise 2, page 18.
- **Exercise 05.5:** Exercise 3, page 18.
- **Exercise 05.6:** Exercise 4, page 18.